Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:52:02.389Z Has data issue: false hasContentIssue false

A Quantitative Model for the Metastable Defect Creation in Amorphous Semiconductors by Kev-Electron Irradiation

Published online by Cambridge University Press:  16 February 2011

A. Scholz
Affiliation:
University of Kaiserslautern, Department of Physics and Center of Materials Research, P.O. Box 3049, D-67653 Kaiserslautern, Germany
B. Schröder
Affiliation:
University of Kaiserslautern, Department of Physics and Center of Materials Research, P.O. Box 3049, D-67653 Kaiserslautern, Germany
H. Oechsner
Affiliation:
University of Kaiserslautern, Department of Physics and Center of Materials Research, P.O. Box 3049, D-67653 Kaiserslautern, Germany
Get access

Abstract

The interaction mechanisms of keV-electrons with the hydrogenated Amorphous semiconductor are briefly discussed and the differences to the metastable defect creation by photons are set out. Based on the knowlegde of the energy dissipation mechanisms of keV-electrons in the hydrogenated Amorphous semiconductor, a model for the creation of metastable defects by keV-electron irradiation is developed and its quantitative agreement with the experimental results is shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ast, D.G., Brodsky, M.H., Inst. Phys. Conf. Ser. No. 43, 1159 (1979).Google Scholar
2. Staebler, D.L., Crandall, R.S., Williams, R., Appl. Phys. Lett. 31, 733 (1981).CrossRefGoogle Scholar
3. Stutzmann, M. in ‘Advances in Solid State Physics’, Vol. 28, 1 (1988).Google Scholar
4. Shirafuji, J., Shirakawa, K., Nagata, S., Jap. J. Appl. Phys. 25, L634 (1986).CrossRefGoogle Scholar
5. Carlson, D.E., Magee, C.W., Proc. 2nd EC PVSC, 312 (Berlin, 1979).Google Scholar
6. Scholz, A., Schröder, B., J. Non-Cryst. Sol. 137&138, 259 (1991).CrossRefGoogle Scholar
7. Gangopadhyay, S., Schröder, B., Geiger, J., Phil. Mag. B 56, 321 (1987).CrossRefGoogle Scholar
8. Wagner, C., Gangopadhyay, S., Schröder, B., Geiger, J., AIP Conf. Proc. 157, 46 (1987).CrossRefGoogle Scholar
9. Joy, D.C., Romig, A.D., Goldstein, J.I., Principles of Analytical Electron Microscopy, (Plenum Press, 1986).Google Scholar
10. Schneider, U., Schröder, B., Solid State Comm. 69, 895 (1989).Google Scholar
11. Schade, H. in Semiconductors and Semimetals, edited by Pankove, J.I., 21B, p. 359 (1984).Google Scholar
12. Stutzmann, M., Jackson, W.B., Tsai, C.C., Phys. Rev. B 34, 23 (1985).CrossRefGoogle Scholar
13. Stutzmann, M., Nunnenkamp, J., Brandt, M.S., Asano, A., Rossi, M.C., J. Non-Cryst. Sol. 137&138, 231 (1991).CrossRefGoogle Scholar
14. Fiebinger, J.R., Müller, R.S., J. Appl. Phys. 43, 3202 (1972).Google Scholar
15. Scholz, A., Herbst, W., Schröder, B., Lechner, P., Proc. 11th EC PVSC, 754 (Montreux, 1992).Google Scholar
16. Street, R.A., Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge, 1991)Google Scholar