Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:33:38.681Z Has data issue: false hasContentIssue false

Quantitative Kelvin Probe Force Microscopy

Published online by Cambridge University Press:  31 January 2011

Christine Baumgart
Affiliation:
[email protected], Forschungszentrum Dresden-Rossendorf, Institute of Ion-Beam Physics and Materials Research, Nanofunctional Films, Dresden, Germany
Manfred Helm
Affiliation:
[email protected], Forschungszentrum Dresden-Rossendorf, Institute of Ion-Beam Physics and Materials Research, Dresden, Saxony, Germany
Heidemarie Schmidt
Affiliation:
[email protected], Forschungszentrum Dresden-Rossendorf, Institute of Ion-Beam Physics and Materials Research, Nanofunctional Films, Dresden, Saxony, Germany
Get access

Abstract

In this paper we report on the investigation of electrostatic forces between a conductive probe and semiconducting materials by means of Kelvin probe force microscopy measurements. Due to the formation of an asymmetric electric dipole at the semiconductor surface, the measured KPFM bias is related with the energy difference between Fermi energy and respective band edge. Quantitative Kelvin probe force microscopy measurements on semiconductors, namely on a conventional dynamic random-access memory cell and on a cross-sectionally prepared Si epilayer structure, are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kelvin, Lord, Phil. Mag. 46 (1898) 82.Google Scholar
2 Nonnemacher, M. O'Boyle, M. P., and Wickramasinghe, H. K. Appl. Phys. Lett. 58, 2921 (1991).Google Scholar
3 Nonnemacher, M. O'Boyle, M. P., and Wickramasinghe, H. K. Ultramicroscopy 42-44, 268 (1992).Google Scholar
4 Bocquet, F. Nony, L. Loppacher, C. and Glatzel, T. Phys. Rev. B78, 035410 (2008).Google Scholar
5 Lucchesi, M. Privitera, G. Labardi, M. Prevosto, D. Capaccioli, S. and Pingue, P. J. Appl. Phys. 105, 054301 (2009).Google Scholar
6 Henning, A. K. Hochwitz, T. Slinkman, J. Never, J. Hoffmann, S. Kaszuba, P. and Daghlian, C. J. Appl. Phys. 77, 1888 (1995)Google Scholar
7 Kikukawa, A. Hosaka, S. and Imura, R. Appl. Phys. Lett. 66, 3510 (1995).Google Scholar
8 Sadewasser, S. Glatzel, Th. Shikler, R. Rosenwaks, Y. and Lux-Steiner, M. Ch., Appl. Surf. Sci. 210, 32 (2003).Google Scholar
9 Rosenwaks, Y. Shikler, R. Glatzel, Th. and Sadewasser, S. Phys. Rev. B70, 085320 (2004).Google Scholar
10 Saraf, S. Molotskii, M. and Rosenwaks, Y. Appl. Phys. Lett. 86, 172104 (2005).Google Scholar
11 Baumgart, C. Helm, M. and Schmidt, H. Phys. Rev. B80, 085305 (2009).Google Scholar
12 Sze, S. M. Physics of Semiconductor Devices, 2nd edition, John Wiley & Sons, New York (1981).Google Scholar
13Application note AN079, Electrical characterization with Scanning capacitance probe microscopes, Veeco Instruments (2008).Google Scholar