Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:40:37.814Z Has data issue: false hasContentIssue false

Quantitative Hrem Study of the Atomic Structure of the Σ(310)/[001] Symmetric Tilt Grain Boundary in Nb

Published online by Cambridge University Press:  15 February 2011

Wayne E. King
Affiliation:
Chemistry and Materials Science Department, University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550
Geoffrey H. Campbell
Affiliation:
Chemistry and Materials Science Department, University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

We have used a non-linear least squares optimization method to deduce a model for the atomic structure of the Σ(310)/[001] symmetric tilt grain boundary in Nb from high resolution electron micrographs (HREM) of a bicrystal prepared by diffusion bonding. The resultant model is similar to, but differs in detail from a theoretical prediction based on interatomic potentials which included angular forces thought to be important in the prediction of defect structures in body centered cubic metals. Results validate this approach as a step towards making HREM a quantitative technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Campbell, G. H., Foiles, S. M., Gumbsch, P., Rüle, M. and King, W. E., Phys. Rev. Lett., (1992); Submitted.Google Scholar
2. Campbell, G. H., King, W. E., Foiles, S. M., Gumbsch, P. and Rühle, M. in Atomic Scale Imaging of Surfaces and Interfaces, edited by Biegelson, B. K., Tong, D. S. Y. and Smith, D. J. (Mater. Res. Soc. Symp. Proc. 295, Pittsburgh, PA 1992).Google Scholar
3. Daw, M. S. and Baskes, M. I., Physical Review Letters, 50 (17), 12851288, (1983).CrossRefGoogle Scholar
4. Daw, M. S. and Baskes, M. I., Physical Review B, 29 (12), 64436453, (1984).Google Scholar
5. Moriarty, J. A. in Many - Atom Interactions in Solids, edited by Nieminen, R. N., Puska, M. J. and Manninen, M. J. (Berlin 1990) pp. 158167.CrossRefGoogle Scholar
6. Carlsson, A. E. in Advances in Research and Applications, edited by Ehrenreich, H. and Turnbull, D. (Solid State Physics 43, New York 1990) pp. 191.Google Scholar
7. Moré, J. J., Garbow, B. S. and Hillstrom, K. E., User Guide for MINPACK-1, Argonne National Laboratory, ANL-80-74, 1980.Google Scholar
8. Stadelmann, P., Ultramicroscopy, 21 131146, (1987).CrossRefGoogle Scholar
9. Moré, J. J. in Lecture Notes in Mathematics, edited by Watson, G. A. (Numerical Analysis 630, Berlin 1977) pp. 116.Google Scholar
10. King, W. E. and Campbell, G. H., Ultramicroscopy, (1992); Accepted.Google Scholar
11. Campbell, G. H., Foiles, S. M., King, W. E., Rühle, M. and Wien, W. in Structure/Property Relationships for Metal/Metal Interfaces, edited by Romig, A. D. Jr., Fowler, D. E. and Bristowe, P. D. (Mater. Res. Soc. Symp. Proc. 229, Pittsburgh, PA 1991) pp. 191195.Google Scholar