Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:41:38.537Z Has data issue: false hasContentIssue false

Quantitative High-Resolution Electron Microscopy of Grain Boundaries in α-Al2O3

Published online by Cambridge University Press:  15 February 2011

T Höche
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D-W- 7000 Stuttgart 1, F.R.Germany
P. R. Kenway
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D-W- 7000 Stuttgart 1, F.R.Germany
H.-J. Kleebe
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D-W- 7000 Stuttgart 1, F.R.Germany
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D-W- 7000 Stuttgart 1, F.R.Germany
Get access

Abstract

Detailed structural characterization of a near Σ11 grain boundary in ultra-pure α-A12O3 bi-crystals was performed by means of high-resolution transmission electron microscopy (HRTEM). High-resolution imaging revealed a characteristic periodic pattern along the grain boundary. In addition to HRTEM studies, atomistic simulations based on an ionic model were used to calculate three-dimensional structure models that were compared with the experimentally obtained images of the grain boundary. The comparison between the simulated and experimental HRTEM images showed good agreement for the theoretically proposed grain-boundary structure with the lowest grain-boundary energy of 1.8 Jm−2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cannon, R.M., Rhodes, W.H. and Heuer, A.H., J. Am. Ceram. Soc. 63,46 (1980).Google Scholar
2. Priester, L. and Lartigue, S., J. Europ. Ceram. Soc. 8,47 (1991).CrossRefGoogle Scholar
3. Moya, E. and Moya, F., in Non-stoichiometric Compounds, Surfaces, Grain Boundaries and Structural Defects, edited by Nowotny, J. and Weppner, W. (Kluwer Academic Press, Rottach-Egern, 1988), p.363 Google Scholar
4. Kronberg, M. L., Acta Met. 5, 507 (1957).CrossRefGoogle Scholar
5. Chan, I.-W., and Xue, L.A., J. Am. Ceram. Soc. 73, 2585 (1990).CrossRefGoogle Scholar
6. Morris, P.A., PhD thesis, M.I.T. Cambidge, MA, 1986.Google Scholar
7. Harding, J.H., Report No. R 13127,AERE Harwell Laboratory, 1988.Google Scholar
8. Stadelmann, P.A., Ultramicroscopy 21, 131 (1987).Google Scholar
9. Möbus, G., Necker, G., and Rühle, M., Ultramicroscopy (in press).Google Scholar
10. Fortunée, R.P., M.S. thesis, Case Western Reverse University, 1981.Google Scholar
11. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, (Oxford University Press, Oxford, 1954).Google Scholar
12. Dick, B.G. and Overhauser, A.W., Phys. Rev., 90, 112, (1958).Google Scholar