Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:37:54.600Z Has data issue: false hasContentIssue false

Quantitative evaluation of bundling effect on single walled carbon nanotubes by resonance Raman spectra

Published online by Cambridge University Press:  01 February 2011

Zhengtang Luo
Affiliation:
Nanomaterials Optoelectronics Laboratory, Department of Chemistry, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269–3136
Rongfu Li
Affiliation:
Nanomaterials Optoelectronics Laboratory, Department of Chemistry, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269–3136
Sang Nyon Kim
Affiliation:
Nanomaterials Optoelectronics Laboratory, Department of Chemistry, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269–3136
Fotios Papadimitrakopoulos*
Affiliation:
Nanomaterials Optoelectronics Laboratory, Department of Chemistry, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269–3136
Get access

Abstract

The radial breathing mode (RBM) region of the resonance Raman spectra of HiPco single walled carbon nanotubes (SWNTs) was investigated as a function of aggregation. This was modeled using an energetic deviation term (ΔE), imparted to the optical transitions (Eii(n, m)) by bundling effect. Eii(n, m) values obtained from photoluminescence (PL) measurements were used to reconstruct these RBM profiles. The simulation revealed that the PL-determined Eii(n, m) set provided a good fit in terms of peak position. Providing an accurate set of Eii(n, m) values becomes available, the RBM profile reconstruction methodology discussed herein could greatly enhance our ability to model a range of physicochemical changes to the immediate environment of SWNTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, (5582), 787792.Google Scholar
2. Heller, D. A.; Barone, P. W.; Swanson, J. P.; Mayrhofer, R. M.; Strano, M. S. J. Phys. Chem. B 2004, 108, (22), 69056909.Google Scholar
3. Kataura, H.; Maniwa, Y.; Masubuchi, S.; Kazama, S.; Zhao, X.; Ando, Y.; Ohtsuka, Y.; Suzuki, S.; Achiba, Y.; Saito, R. AIP Conference Proceedings 2000, 544, (Electronic Properties of Novel Materials--Molecular Nanostructures), 262265.Google Scholar
4. Richter, E.; Subbaswamy, K. R. Physical Review Letters 1997, 79, (14), 27382741.Google Scholar
5. Kukovecz, A.; Kramberger, C.; Georgakilas, V.; Prato, M.; Kuzmany, H. Eur. Phys. J. B 2002, 28, (2), 223230.Google Scholar
6. Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Science 2002, 298, (5602), 23612366.Google Scholar
7. Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Science 2003, 302, (5650), 15451548.Google Scholar
8. Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. J. Phys. Chem. B 2001, 105, (35), 82978301.Google Scholar
9. O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, (5581), 593–6.Google Scholar
10. Kuzmany, H.; Plank, W.; Hulman, M.; Kramberger, C.; Gruneis, A.; Pichler, T.; Peterlik, H.; Kataura, H.; Achiba, Y. Eur. Phys. J. B 2001, 22, (3), 307320.Google Scholar
11. Martin, R. M.; Falicov, L. M. Top. Appl. Phys. 1975, 8, (Light Scattering Solids), 79145.Google Scholar
12. Souza Filho, A. G.; Jorio, A.; Hafner, J. H.; Lieber, C. M.; Saito, R.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. B 2001, 63, (24), 241404/1–241404/4.Google Scholar
13. Wildoer, J. W. G.; Venema, L. C.; Rinzier, A. G.; Smalley, R. E.; Dekker, C. Nature 1998, 391, (6662), 5962.Google Scholar
14. Odom, T. W.; Huang, J.-L.; Kim, P.; Lieber, C. M. Nature 1998, 391, (6662), 6264.Google Scholar
15. Dresselhaus, M. S.; Eklund, P. C. Adv. Phys. 2000, 49, (6), 705814.Google Scholar
16. Rao, A. M.; Eklund, P. C.; Bandow, S.; Thess, A.; Smalley, R. E. Nature 1997, 388, (6639), 257259.Google Scholar
17. Rao, A. M.; Chen, J.; Richter, E.; Schlecht, U.; Eklund, P. C.; Haddon, R. C.; Venkateswaran, U. D.; Kwon, Y. K.; Tomanek, D. Physical Review Letters 2001, 86, (17), 38953898.Google Scholar
18. Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Syn. Met. 1999, 103, (1–3), 25552558.Google Scholar
19. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. B 2000, 61, (4), 29812990.Google Scholar
21. Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Science 2003, 301, (5639), 15191522.Google Scholar