Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:54:09.714Z Has data issue: false hasContentIssue false

Quantification of Trace and Ultra-trace Elements in Nuclear Grade Manufactured Graphites by Fast-Flow Glow Discharge Mass Spectrometry and by Inductively Coupled Plasma – Mass Spectrometry after Microwave – Induced Combustion Digestions

Published online by Cambridge University Press:  31 January 2011

Xinwei Wang
Affiliation:
[email protected], EAG-NY, Shiva Technologies, Syracuse, New York, United States
Gaurav Bhagat
Affiliation:
[email protected], EAG-NY, Shiva Technologies, Syracuse, New York, United States
Kevin Michael O'Brien
Affiliation:
[email protected], EAG-NY, Shiva Technologies, Syracuse, New York, United States
Karol Putyera
Affiliation:
[email protected]@eaglabs.com, EAG-NY, Shiva Technologies, 6707 Brooklawn parkway, Syracuse, New York, 13211, United States, 3154319900, 3154319800
Get access

Abstract

FF-GDMS and MIC-ICP-MS methods were developed for the determination of mg/kg- and μg/kg-level B, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Sb, W and Pb in nuclear-grade graphite. Consistent results have been achieved in determining trace elements like B, Ti, Cr, Mn, Zr, Sb and Pb by both methods, which vary mostly less than ±30%, and are in line with the manufacturer reference values. On Mg, Al, Fe, Co, Zn, Mo and W, FF-GDMS analyses also show good agreement with the manufacturer's data. Continuing efforts in identifying source of interference, which has limited the MIC-ICP-MS analysis of these elements, is currently underway.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Bonal, J.-P.; Kohyama, A.; van der Laan, J.; Snead, L. L. In MRS Bulletin, 2009.Google Scholar
(2) Shibata, T.; Sumita, J.; Tada, T.; Hanawa, S.; Sawa, K.; Iyoku, T. J. Nucl. Mat. 2008, 381, 165.Google Scholar
(3) Virgilev, Y. S. Atomic Energy 1998, 84.Google Scholar
(4) Contescu, C.; Azad, S.; Miller, D.; Lance, M. J.; Baker, F. S.; Burchell, T. J. Nucl. Mat. 2008, 381, 15.Google Scholar
(5) Franzen, P.; Haasz, A. A.; Davis, J. W. J. Nucl. Mat. 1995, 226, 15.Google Scholar
(6) Bolewski, A. Jr.; Ciechanowski, M.; Dydejczyk, A.; Kreft, A. Nucl. Instr. and Meth. in Phys. Res. B 2005, 237, 602.Google Scholar
(7) Delle, W.; Koizlik, K.; Nickel, H.Graphitische Werkstoffe fur den Enisatz in Kernreaktoren”, Ed. Karl Thiemig, A.G., pp 5556, Munich, 1983.Google Scholar
(8) Bogershausen, W.; Cicciarelli, R.; Gercken, B.; Konig, E.; Krivan, V.; Muller-Kafer, R.; Pavel, J.; Seltner, H.; Schelcher, J. Fresenius J. Anal. Chem. 1997, 357, 266.Google Scholar
(9) Schaffer, U.; Krivan, V. Anal. Chem. 1999, 71, 849.Google Scholar
(10) Pickhardt, C.; Becker, J. S. Fresenius J. Anal. Chem. 2001, 370, 534.Google Scholar
(11) Schaffer, U.; Krivan, V. Fresenius J. Anal. Chem. 2001, 371, 859.Google Scholar
(12) Braun, T.; Rausch, H. Anal. Chem. 1995, 67, 1517.Google Scholar
(13) Mahantl, H. S.; Barnes, R. M. Anal. Chem. 1983, 55, 403.Google Scholar
(14) Michellon, C.; Putyera, K.; Kasik, M.; Hockett, R.Production Support and Process Control of PV Materials by Direct Sampling High Resolution Glow Discharge Mass Spectrometry Methods”, Application Notes PA117, Evans Analytic Group LLC, 2008.Google Scholar
(15) Putyera, K.; Su, K.; Liu, C.; Hockett, R. S.; Wang, L. 2008 Fall MRS Proceedings - Photovoltaic Materials and Manufacturing Issues, Vol. 1123, Paper#1123-P01-08, Dec 1-5 2008, Boston MA.Google Scholar
(16) Spitsberg, I. T.; Putyera, K. Surf. & Coatings Techn. 2001, 139, 35.Google Scholar
(17) Flores, E. M. M.; Barin, J. S.; Mesko, M. F.; Knapp, G. Spectrochimica Acta Part B 2007, 62, 1051.Google Scholar