Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:30:41.977Z Has data issue: false hasContentIssue false

Pyrene Fluorescence as a Molecular Probe of Miscibility in Organic/Inorganic Hybrid Nanocomposites Suitable for Microelectronic Applications

Published online by Cambridge University Press:  01 February 2011

Q. R. Huang
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
David Mecerreyes
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.
James L. Hedrick
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.
Willi Volksen
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.
Curtis W. Frank
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
Robert D. Miller
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.
Get access

Abstract

Fluorescence spectroscopy has been used to study the miscibility of methyl silsesquioxane (MSSQ)/poly(methyl methacrylate-co-dimethylaminoethyl methacrylate) [P(MMA-co-DMAEMA)] hybrid nanocomposites, which are useful in fabricating the next generation of spin-on, ultra-low dielectric constant materials in the microelectronic industries. In this work, we have attached the pyrene group into the PMMA side chains. MSSQ with different amount of initial -SiOH (silanol) endgroups are used to study the effect of endgroup functionality on the phase separation behavior of the hybrid nanocomposites. Pyrene excimer fluorescence results reveal that MSSQ is miscible with P(MMA-co-DMAEMA) only up to 6 wt% P(MMA-co-DMAEMA) loading level, thus establishing an upper limit on local miscibility with MSSQ. As the P(MMA-co-DMAEMA) loading level increases, the excimer to monomer ratios also increase, suggesting that the MSSQ/P(MMA-co-DMAEMA) hybrid nanocomposites move toward greater immiscibility. This ratio approaches that of the neat polymer for domain sizes > 5 nm (SAXS, SANS). The fluorescence results also show that, the lower the amount of initial silanol groups in MSSQ, the greater the immiscibility of the MSSQ and porogen, which ultimately translates into larger pores upon porogen burnout.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Miller, R. D., Science, 286, 421 (1999); (b) G. Maier, Prog. Polym. Sci. 26, 3 (2001); (c) C. N. Nguyen, K. R. Carter, C. J. Hawker, J. L. Hedrick, R. L. Jaffe, R. D. Miller, J. F. Remenar, H. -W. Rhee, P. M. Rice, M. F. Toney, M. Trollsås, and D. Y. Yoon, Chem. Mater. 11, 3080 (1999).Google Scholar
2. (a) Rottman, C., Grader, G., DeHazan, Y., Melchior, S., and Avnir, D., J. Am. Chem. Soc., 121, 8533 (1999); (b) Dantas de Morais, T.; Chaput, F.; Bailot, J. -P.; Lahlil, K.; Darracq, B.; and Levy, Y. Adv. Mater. 11, 107 (1999).Google Scholar
3. (a) Lev, O., Tsionsky, M., Rabinovich, L., Glezer, V., Sampath, S., Pankratov, I., J. Gun, Anal. Chem. 67, 22A (1995); (b) M. A. Harmer, W. E. Farneth, and Q. Sun, J. Am. Chem. Soc., 118, 7708 (1996); (c) U. Schubert, New J. Chem. 18, 1049 (1994).Google Scholar
4. (a) Guizard, C., and Lacan, P., New J. Chem. 18, 1097 (1994); (b) M. Smaihi, T. Jermoumi, J. Marignan, and R. D. Noble, J. Membr. Sci.; 116, 211 (1996).Google Scholar
5. (a) Beecroft, L. L., Ober, C. K., Chem. Mater. 9, 1302 (1997); (b) L. C. Klein, Sol-gel Optics, Processing and Applications; Kluwer: Boston, 1994.Google Scholar
6. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association: San Jose, CA, 1997.Google Scholar
7. (a) Semerak, S. N., Frank, C. W., Adv. Polym. Sci. 54, 31 (1983); (b) D. C. Dong, M. A. Winnik, Can. J. Chem. 62, 2560 (1985); (c) F. M. Winnik, Chem. Rev., 93, 587 (1993).Google Scholar
8. Birks, J. B., Photophysics of Aromatic Molecules, Wiley-Interscience: New York, 1970.Google Scholar
9. (a) Frank, C. W., Gashgari, M. A., Semerak, S. N., NATO ASI Ser., Ser. C.; 182, 523 (1986); (b) M. A. Gashgari, C. W. Frank, Macromolecules, 21, 2782 (1988); (c) C. W. Frank, W. C. Zin, ACS Symp. Ser. 358 (Photophysics of Polymers), 18 (1987); (d) S. N. Semerak, C. W. Frank, Adv. Chem. Ser., 203 (Polym. Charact.), 751 (1983).Google Scholar
10. (a) Kalyanasundaram, K.; Thomas, J. K., J. Am. Chem. Soc., 99, 2039 (1977); (b) A. Nakajima. Bull. Chem. Soc. Jpn., 44, 3272 (1971).Google Scholar
11. Utracki, L. A., Polymer Alloys and Blends, Munich: Hanser, 1989.Google Scholar
12. Huang, Q. R.; Volksen, W.; Huang, E.; Toney, M.; Frank, C. W.; and Miller, R. D. Chem. Mater. (submitted).Google Scholar
13. (a) Keeling-Tucker, T., Brennan, J. D., Chem. Mater. 13, 3331 (2001); (b) A. Katz, M. E. Davis, Nature, 403, 286 (2000); (c) K. Matsui, T. Nakazawa, H. Morisaka, J. Phys. Chem.; 95, 976 (1991); (d) V. R. Kaufman, D. Avnir, Langmuir, 2, 717 (1986); (e) K. Matsui, T. Nakazawa, Bull. Chem. Soc. Jpn., 63, 11 (1990).Google Scholar
14. Petkov, M. P., Weber, M. H., Lynn, K. G., Rodbell, K. P., Volksen, W., and Miller, R. D., Proc. Mater. Res. Soc. (Advanced Metallization Conference), San Diego CA, 2000 (in press).Google Scholar
15. Yang, G. Y., Briber, R. M., Huang, E., Rice, P. M., Volksen, W., Miller, R. D., Polym. Mater. Sci. Eng. 85, 18 (2001).Google Scholar
16. Huang, E., Miller, R. D., et al. (unpublished).Google Scholar