Published online by Cambridge University Press: 31 January 2011
There are several ways to nanostructure Si. Some of them, e.g. nanoscale Si-layerd systems buried within the n+ layer of a crystalline Si can provide an initial material with unpredicted optoelectronic behavior. Such a transformation leads to a PV Si metamaterial, whose optoelectronic properties arise from qualitatively new response functions that are (i) not observed in the constituent materials and (ii) result from the inclusion of artificially fabricated, intrinsic and extrinsic, low-dimensional components. We show that an extremely strong c-Si:P absorptance, is larger than can result from conventional conversion because the surface population increases by injection of additional carriers from a nanostratum (transformed up to a Si-metamaterial) lying just behind the top c-Si:P-layer.