Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T09:35:21.257Z Has data issue: false hasContentIssue false

Purification of SWNTs Using Microwave Heating

Published online by Cambridge University Press:  15 March 2011

Avetik R. Harutyunyan
Affiliation:
Dept. of Physics, 104 Davey Laboratory
Bhabendra K. Pradhan
Affiliation:
Dept. of Physics, 104 Davey Laboratory
Gamini U. Sumanasekera
Affiliation:
Dept. of Physics, 104 Davey Laboratory
Jiping Chang
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Gugang Chen
Affiliation:
Dept. of Physics, 104 Davey Laboratory
H. Goto
Affiliation:
Honda R&D Co., Ltd. Wako Research Center, Saitama 351-0193, Japan
J. Fujiwara
Affiliation:
Honda R&D Co., Ltd. Wako Research Center, Saitama 351-0193, Japan
Peter C. Eklund
Affiliation:
Dept. of Physics, 104 Davey Laboratory
Get access

Abstract

A new method for purifying single wall carbon nanotubes (SWNTs) using microwave heating is developed. The microwaves couple to the residual metal catalyst, raising significantly the local temperature leading to both the oxidation and rupturing of the carbon passivation layer over the metal catalyst particles and sintering. With this protective carbon coating weakened or removed, a mild acid treatment in HCl is then sufficient to remove most of the metal in the sample, leaving the nanotubes in tact. Results from transmission and scanning electron microscopy (TEM & SEM), Raman spectroscopy and thermo-gravimetric studies are discussed.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Ichihashi, T., Nature 363 (1993) 603.Google Scholar
2. Bethune, D.S., Kiang, C.H., Vries, M.S. de, Gorman, G., Savoy, R., Vazques, J., Beyers, R., Nature 363 (1993) 605.Google Scholar
3. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E., Science 273 (1996) 483.Google Scholar
4. Tohji, K., Goto, T., Takahashi, H., Shinoda, Y., Shimizu, N., Jeyadevan, B., Matsuoka, I., Saito, Y., Kasuya, A., Ohsuna, T., Hiraga, K., Nishina, Y., J.Phys. Chem., 101 (1996) 1974.Google Scholar
5. Shi, Z., Lian, Y., Liao, F., Zhou, X., Gu, Z., Zhang, Y., Iijima, S., Solid State Commun., 112 (1999) 35.Google Scholar
6. Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., F.J. Rodriguez-Macias, Boul, P.J., Lu, A.H., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., Smalley, R.E., Appl.Phys. A 67 (1998) 29.Google Scholar
7. Dillon, A.C., Gennett, T., Jones, K.M., Alleman, J.L., Parilla, P.A., Heben, M.J., Adv. Mater. 11 (1999) 1354.Google Scholar
8. Bandow, S., Rao, A.M., Williams, K.A., Thess, A., Smalley, R.E., Eklund, P.C., J.Phys.Chem. B 101 (1997) 8839.Google Scholar
9. Shelmov, K.B., Esenaliev, R.O., Rinzler, A.G., Huffman, C.B., Smalley, R.E., Chem. Phys. Lett. 282 (1998) 429.Google Scholar
10. Pradhan, B.K., Harutyunyan, A.R., Eklund, P.C., PSU Invention Disclosure No, 2001-2445, 2001 Google Scholar
11. Roy, R., Agrawal, D., Cheng, J., Gedevanishvili, S., Nature, v399, 1999, 668.Google Scholar
12. Harutyunyan, A.R., Pradhan, B.K. and Eklund, P.C. submitted to J. App. Phys. (11/2001).Google Scholar
13. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C., Science of Fullerenes and Carbon Nanotubes, (Academic Press, San Diego, 1996)Google Scholar
14. Dresselhaus, M. S., Dresselhaus, G., Jorio, A., A. G. Souza Filho and Saito, R., Carbon (submitted).Google Scholar