Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:40:04.152Z Has data issue: false hasContentIssue false

Purely Intrinsic Poly-Silicon Films by Hot Wire Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

J. K. Rath
Affiliation:
Utrecht University, Debye Institute, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
K. F. Feenstra
Affiliation:
Utrecht University, Debye Institute, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
D. Ruff
Affiliation:
Philipps-Universitat Marburg, D-35032 Marburg, Germany.
H. Meiling
Affiliation:
Utrecht University, Debye Institute, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
R. E. I. Schropp
Affiliation:
Utrecht University, Debye Institute, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
Get access

Abstract

Poly-silicon films have been prepared by hot-wire chemical vapor deposition (HWCVD) from hydrogen diluted silane gas at a low temperature (430 °C). The optical gap of the poly-silicon films is 1.1 eV, though with a higher optical absorption than c-Si. The grains have a preferential orientation (220) perpendicular to the substrate with an average crystallite size of 70 nm. The crystalline volume fraction is 95% with complete coalescence of grains. Large structures up to 0.5 μm could be observed in the AFM micrograph. The activation energy (0.54 eV) and the low carrier concentration (1011 cm−3) indicate a fully intrinsic nature of the films. The μτ product of carriers is 7.1×10−7 cm2V−1 whereas the ambipolar diffusion length (LD) is 334 nm. The excellent photo-conductive properties are attributed to the low (∼1017 cm−3) defect density. The HWCVD poly-silicon films showed a very small temperature dependence of mobility, indicating negligible trapping of carriers at the grain boundaries. Preliminary n-i-p cells incorporating poly-silicon i-layer yielded 3.15 % efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Faraji, M., Gokhale, Sunil, Choudhari, S.M., Takwale, M.G. and Ghaisas, S.V., Appl. Phys. Lett., 60, 3289 (1992).Google Scholar
[2]Meier, J., Proc. MRS Spring Meeting, 420, San Francisco (1996) (in print).Google Scholar
[3]Dusane, R.O. et al. , Appl. Phys. Lett., 63, 2201 (1993).Google Scholar
[4]Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedure, John Wiley & Sons, New York (1974).Google Scholar
[5]Bustarret, E., Hachichia, M.A. and Brunei, M., Appl. Phys. Lett., 52, 1675 (1988).Google Scholar
[6]Rath, J.K. et al. , Tech. Digest Int. PVSEC-9, Miyazaki. Japan (1996) p227.Google Scholar
[7]Veprek, S., Iqbal, Z., Oswald, H.R. and Webb, A.P., Phys, J.C: Solid State Phys., 14, 295 (1981).Google Scholar
[8]Becker, G.E. and Gobeli, G.W., J. Chem. Phys., 38, 2942 (1963).Google Scholar
[9]Satoh, Takahashi and Hiraki, Akio, Jpn. J. Appl. Phys., 24, L491 (1985).Google Scholar
[10]Putley, E.H., The Hall effect and related phenomena, Butterworth & Co.(1960).Google Scholar
[11]Rath, J.K. et al. , Proc. 25th IEEE PVSC, Washington D.C., (1996) p1 101.Google Scholar
[12]Krankenhagen, R. et al. , Proc. 13th EPVSEC, Nice (1995) pl700.Google Scholar