Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T09:02:29.685Z Has data issue: false hasContentIssue false

Pulse-to-Pulse Laser Stability Effects on Multiple Shot Excimer Laser Crystallized a-Si Thin Films

Published online by Cambridge University Press:  15 February 2011

R. I. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
G. B. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
D. K. Fork
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
P. Mei
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
S. E. Ready
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
Get access

Abstract

Laser crystallized amorphous silicon thin films on quartz exhibit a peak in the grain size, electron mobility and the Si (111) x-ray intensity as a function of the laser fluence, substrate temperature, film thickness, and the number of laser shots per unit area. The peak in grain size has also been shown to be dependent: on the stability of the pulse-to-pulse laser energy density, particularly at high shot densities. The shape of the distribution profile of the pulse-to-pulse laser fluence can significantly alter the grain growth at higher shot densities. The modified growth can be expressed by a simple model based on the mean and standard deviation of the laser energy density relative to the characteristic fluence at which the grain size, mobility, and Si (111) x-ray intensities are maximized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, R. I., Anderson, G. B., Boyce, J. B., Fork, D. K., Mei, P., Ready, S. E., and Chen, S., Mat. Res. Soc. Proc. 297, 533 (1993).CrossRefGoogle Scholar
2. Boyce, J. B., Anderson, G.B., Fork, D. K., Johnson, R. I., Mei, P., and Ready, S. E., Mat. Res. Proc. 321, 671 (1994).CrossRefGoogle Scholar
3. Im, J. S., Kim, H. K., and Thompson, M. O., Appl. Phys. Lett. 63, 1969 (1993).Google Scholar
4. Johnson, R. I., Anderson, G. B., Ready, S. E., Boyce, J. B., Mat. Res Soc. Proc. 219, 407, (1991).CrossRefGoogle Scholar
5. Kuriyama, H., et al, IEEE International Electron Meeting, Wash. D.C. (1991).Google Scholar
6. Sameshima, T. and Usui, S., Mat. Res. Soc. Symp. Proc. 71, 435 (1986).CrossRefGoogle Scholar
7. Sameshima, T., Hara, M., and Usui, S., Polycrystalline Semiconductors II, eds. Werner, J. H. and Strunk, H. P., Springer Proceedings in Physics, Vol. 54, Springer-Verlag, Berlin (1991).Google Scholar
8. Bachrach, R. Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. I., and Anderson, G. B., J. Electron. Materials 19, 241 (1990).Google Scholar
9. Bachrach, R.Z, Winer, K., Boyce, J. B., Ponce, F. A., Ready, S. E., Johnson, R. I., Anderson, G., Mat. Res. Proc. 157, 467 (1990)Google Scholar
10. Winer, K., Anderson, G. B., Ready, S. E., Bachrach, R. Z., Johnson, R. I., Ponce, F.A., and Boyce, J. B., Appl. Phys. Lett. 57, 2222 (1990).Google Scholar
11. Johnson, R. I., Anderson, G. B., Ready, S. E., Fork, D. K., and Boyce, J. B., Mat. Res.Soc. Proc. 258, 123 (1992).CrossRefGoogle Scholar
12. Ready, S. E., Boyce, J. B., Bachrach, R. Z., Johnson, R. I., Winer, K., Anderson, G. B., and Tsai, C. C., Mat. Res. Soc. Proc. 149, 345 (1989).CrossRefGoogle Scholar
13. Im, J. S., and Kim, H. J., Appl. Phys. Lett, 64, 2303, (1994)CrossRefGoogle Scholar