Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:13:38.006Z Has data issue: false hasContentIssue false

Pulsed Laser Melting of Amorphous Silicon: Time-Resolved and Post-Irradiation Studies

Published online by Cambridge University Press:  22 February 2011

D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831 USA
R. F. Wood
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831 USA
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831 USA
J. Narayan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831 USA
Get access

Abstract

Measurements of the time of the onset of melting of self-implantation amorphized (a) Si, during an incident laser pulse, have been combined with modified melting model calculations and measurements of surface melt duration to demonstrate that the thermal conductivity, Ka, of a-Si is very low (≃0.02 W/cm-K). Ka is also shown to be the dominant parameter determining the dynamical response of ionimplanted Si to pulsed laser radiation; the latent heat and melting temperature of a-Si are relatively unimportant. Cross-sectional transmission electron micrographs on implantation-amorphized Si layers of several different thicknesses show that for energy densities less than the threshold value for complete annealing there are usually two distinct regions in the re-solidified a-Si, consisting of fine-grained and large-grained polycrystalline Si, respectively. The presence of the fine-grained poly-Si suggests that bulk nucleation occurs directly from the highly undercooled liquid phase. Thermal melting model calculations suggest that the nucleation temperature, Tn is ≃1200°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lowndes, D. H., Wood, R. F., and Westbrook, R. D., Appl. Phys. Lett. 43, 258 (1983).Google Scholar
2.Lowndes, D. H., Wood, R. F., and Narayan, J., submitted to Physical Review Letters.Google Scholar
3.Wood, R. F., Lowndes, D. H., and Narayan, J. (in preparation).Google Scholar
4.Narayan, J. and White, C. W., submitted to Applied Physics Letters.Google Scholar
5.Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, L. D., Mat. Res. Soc. Symp. 13, 141 (1983) and references herein to earlier papers by these authors.Google Scholar
6.Olson, G. L., Roth, J. A., Hess, L. D., and Narayan, J., “Proc. of U.S.-Japan Seminar on Solid Phase Epitaxy and Interface Kinetics, Oiso, Japan (June 20–24, 1983).Google Scholar
7.Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 42, 698 (1983).Google Scholar
8.Bagley, B. G. and Chen, H. S., in AIP Conf. Proc. 50, 97 (1979).Google Scholar
9.Spaepen, F. and Turnbull, D., ibid., p. 73Google Scholar
10.Baeri, P., Foti, G., Poate, J. M., and Cullis, A. G., Phys. Rev. Lett. 45, 2036 (1980).Google Scholar
11.Knapp, J. A. and Picraux, S. T., Appl. Phys. Lett. 38, 873 (1981).Google Scholar
12.Wood, R. F. and Giles, G. E., Phys. Rev. B 23, 2923 (1981).Google Scholar
13.Jellison, G. E. Jr. (private communication).Google Scholar
14.Glassbrenner, C. J. and Slack, G. A., Phys. Rev. 134, A1058 (1964).Google Scholar
15.Goldsmid, H. J., Kaila, M. M., and Paul, G. L., Phys. Status Solidi A 76, K31 (1983).Google Scholar