Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T07:39:55.576Z Has data issue: false hasContentIssue false

Pulsed Laser Deposition and Atomic Scale Characterization of Perovskite Oxide Films

Published online by Cambridge University Press:  01 January 1992

H. Koinuma
Affiliation:
Research Laboratoryof Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan
M. Yoshimoto
Affiliation:
Research Laboratoryof Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan
M. Kawasaki
Affiliation:
Research Laboratoryof Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan
H. Ohkubo
Affiliation:
Research Laboratoryof Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan
N. Kanda
Affiliation:
Research Laboratoryof Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan
J.P. Gong
Affiliation:
Research Laboratoryof Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan
Get access

Abstract

Perovskite oxide films inclusive of high Tc cuprates were fabricated by pulsedlaser deposition (PLD) under both conventional Po2(0.01∼1Torr) and high vacuum(≤10−6 Torr) conditions and their surface morphology, crystal quality, and conductivity were evaluated. Under optimized conventional PLD conditions, we obtained high quality YBa2Cu3O7−δ (YBCO) films that showed clear energy gaps and atomically flat surface image in the small area (4x4nm) STM/STS measurements. AFM and SEM ana!yscs on wider film surfaces (∼1x1μm), however, revealed granular structure of about 250nm grains with their root mean square roughness of 5nm.

Under high vacuum PLD, i.e. laser MBE conditions, not only epitaxial but also two dimensional growth has been verified for such films as SrTiO3−x, SrVO3−y, and (AE)CuO2−z(AE=alkaline earth metal) by the RHEED observation of fine streak patterns and intensity oscillations. AFM demonstrated atomically flat surfaces of these films. Oxgen or nitric oxide pressure at the laser MBE growth gave crucial effects on the electrical conductivity of SrTiO3−x. and predominant crystal phase of SrCuO2−z.

Insulating BaTiO3 films with atomically flat surfaces could be fabricated by both conventional and high vacuum PLD conditions. RBS channeling measurements revealed very high epitaxial quality (χmin−2%) of our SrTiO3 and BaTiO3 films. The factors controlling the surface morphology and electrical properties of perovskite oxide epitaxial films,are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Koinuma, H., Kawasaki, M., Funabashi, M., Hasegawa, T., Kishio, K., Kitazawa, K., Fueki, K., Nagata, S., J. Appl. Phys., 62, 1524 (1987)Google Scholar
2. Koinuma, H., Nagata, H., Takano, A., Kawasaki, M., Yoshimoto, M. in Science and Technology of Thin Film Superconductors, edited by McDonnell, R. D. and Wolf, S. A. (Plenum Press, New York, 1989), pp. 205213 Google Scholar
3. Fukuda, K., Kogoma, M., Okazaki, S., Hashimoto, T., Kawasaki, M., Yoshimoto, M., Koinuma, H., Proc. 9th Int'l Symp. on Plasma Chemistry, 3, 1521 (1989)Google Scholar
4. Hashimoto, T., Kitazawa, K., Nakabayashi, M., Shiraishi, T., Suemune, Y., Yamamoto, T., Koinuma, H., Appl. Organomet. Chem., 5, 325 (1991)Google Scholar
5. Kawasaki, M., Gong, J. P., Nantoh, M., Hasegawa, T., Kitazawa, K., Kumagai, M., Hirai, K., Horiguchi, K., Yoshimoto, M., Koinuma, H., Jpn. J. Appl. Phys., in pressGoogle Scholar
6. Yoshimoto, M., Nagata, H., Tsukahara, T., Koinuma, H., Jpn. J. Appl. Phys., 29, L1199 (1990)Google Scholar
7. Cheung, J.T. and Sankur, H. in CRC Cristical Review in Solid State and Material Science (CRC, Cleaveland, 1988), Vol. 15, Issue 1Google Scholar
8. Koinuma, H., Nagata, H., Tsukahara, T., Gonda, S., Yoshimoto, M., Appl. Phys, Lett., 58, 2027 (1991)Google Scholar
9. Koinuma, H., Yoshimoto, M., Nagata, H., Tsukahara, T., Solid State Commun., 80, 9 (1991)Google Scholar
10. Koinuma, H., Yoshimoto, M., Nagata, H. in Chemical Processing of Advanced Materials, edited by Hench, L. L. and West, J. K. (John Wiley & Sons Inc., New York, 1992), Chap. 29, pp.315325 Google Scholar
11. Gerber, C., Anselmatti, D., Bednorz, J. G., Mannhart, J., Schlom, D. G., Nature, 350, 279 (1991)Google Scholar
12. Smith, M. G., Manthiram, A., Zhou, J., Goodenough, J. B., Markert, J. T., Nature, 351, 549 (1991)Google Scholar
13. Takano, M., Azuma, M., Hiroi, Z., Bando, Y., Takada, Y., Physica C, 176, 445 (1991)Google Scholar
14. Li, X., Kawai, T., Kawai, S., Jpn. J. Appl. Phys., 31, 934 (1992)Google Scholar