Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:45:58.988Z Has data issue: false hasContentIssue false

Pulsed Laser Ablation Growth and Doping of Epitaxial Compound Semiconductor Films

Published online by Cambridge University Press:  15 February 2011

Douglas H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056
Christopher M. Rouleau
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056
D. B. Geohegan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056
A. A. Puretzky
Affiliation:
Institute of Spectroscopy, Troitsk, Russia
M. A. Strauss
Affiliation:
Dept. of MS&E, The University of Tennessee, Knoxville, TN 37996-2200
A. J. Pedraza
Affiliation:
Dept. of MS&E, The University of Tennessee, Knoxville, TN 37996-2200
J. W. Park
Affiliation:
Dept. of MS&E, The University of Tennessee, Knoxville, TN 37996-2200
J. D. Budai
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056
D. B. Poker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056
Get access

Abstract

Pulsed laser ablation (PLA) has several characteristics that are potentially attractive for the growth and doping of chemically complex compound semiconductors including (1) stoichiometric (congruent) transfer of composition from target to film, (2) the use of reactive gases to control film composition and/or doping via energetic-beam-induced reactions, and (3) low-temperature nonequilibrium phase formation in the laser-generated plasma “plume.” However, the electrical properties of compound semiconductors are far more sensitive to low concentrations of defects than are the oxide metals/ceramics for which PLA has been so successful. Only recently have doped epitaxial compound semiconductor films been grown by PLA. Fundamental studies are being carried out to relate film electrical and microstructural properties to the energy distribution of ablated species, to the temporal evolution of the ablation pulse in ambient gases, and to beam-assisted surface and/or gas-phase reactions. In this paper we describe results of ex situ Hall effect, high-resolution x-ray diffraction, transmission electron microscopy, and Rutherford backscattering measurements that are being used in combination with in situ RHEED and time-resolved ion probe measurements to evaluate PLA for growth of doped epitaxial compound semiconductor films and heterostructures. Examples are presented and results analyzed for doped II–VI, I–III–VI, and column-Ill nitride materials grown recently in this and other laboratories.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See Pulsed Laser Deposition of Thin Films, ed. by Chrisey, D. B. and Hubler, G. K., John Wiley and Sons, New York, 1994.Google Scholar
2 For selected references to early PLD of semiconductors, see the bibliography by Saenger, K. L., p. 581604 in Ref. 1.Google Scholar
3 Möller, H. J., Chap. 8 in Semiconductors for Solar Cells. Artech House, Norwood, MA, 1993.Google Scholar
4 “Pulsed Laser Deposition of Epitaxial AlN, GaN, and InN Thin Films on Sapphire(000l),” Feiler, D., Williams, R. S., Talin, A. A., Yoon, H., and Goorsky, M. S., submitted to J. of Crystal Growth.Google Scholar
5 “Pulsed Laser Deposition of Epitaxial GaN on Sapphire(000l),” Feiler, D., Williams, R. S., Talin, A. A., Yoon, H., Matney, K., and Goorsky, M. S., submitted to Applied Physics Letters.Google Scholar
6 McCamy, J. W., Lowndes, D. H., and Budai, J. D., Appi Phys. Lett. 63, 3008 (1993).Google Scholar
7 Lowndes, D. H., Rouleau, C. M., McCamy, J. W., Budai, J. D., Poker, D. B., Geohegan, D. B., Puretzky, A. A., and Zhu, Shen, p. 85 in Film Synthesis and Growth Using Energetic Beams. ed. by Atwater, H. A., Dickinson, J. T., Lowndes, D. H., and Polman, A., Materials Research Society, Pittsburgh, PA, 1995.Google Scholar
8 Rouleau, C. M., Lowndes., D. H. McCamy, J. W., Budai, J. D., Poker, D. B., Geohegan, D. B., Puretzky, A. A., and Zhu., Shen Appl. Phys. Lett. 67, 2545 (1995).Google Scholar
9 Shen, W. P. and Kwok, H. S., p. 91 in Film Synthesis and Growth Using Energetic Beams, ed. by Atwater, H. A., Dickinson, J. T., Lowndes, D. H., and Polman, A., Materials Research Society, Pittsburgh, PA, 1995.Google Scholar
10 Shen, W. P. and Kwok, H. S., p. 173 in New Materials for Advanced Solid State Lasers, ed. by Chai, B. H. T., Payne, S. A., Fan, T. Y., and Cassanho, A., Materials Research Society, Pittsburgh, PA, 1994.Google Scholar
11 Cheung, J. T. and Madden, J., J. Vac. Sci. Technol. B5, 705 (1987); see also J. T. Cheung, chap. 22 in Ref. 1.Google Scholar
12 Park, R. M. et al. , Appl. Phys. Lett. 57, 2127 (1990).Google Scholar
13 Ferreira, S. O. et al. , J. Cryst. Growth 140, 282 (1994).Google Scholar
14 Baron, T. et al. , Appl. Phys. Lett. 65, 1284 (1994).Google Scholar
15 Tuttle, J. R. et al. , Progress in Photovoltaics 3, 235 (1995); M. A. Contreras et al., Prog. in Photovoltaics 2, 287 (1994); A. M. Gabor et al., 12th NREL PV Program Review, AIP Conf. Proc. 303, 59 (1994).Google Scholar
16 Schock, H. W., Optoelectronics-Devices and Technologies 9, 511 (1994); H. W. Schock, Solar Energy Materials and Solar Cells 34, 19 (1994); T. Walter and H. W. Schock, 12th NREL PV Program Review, AIP Conf. Proc. 303, 67 (1994).Google Scholar
17 Cheung, J. T., Chap. 1 in Ref. 1.Google Scholar
18 Lowndes, D. H., Rouleau, C. M., Park, J.-W. et al. , manuscript in preparation.Google Scholar
19 See the paper by Rouleau, C. M., Lowndes, D. H., Strauss, M. A., Cao, S., Pedraza, A. J., Geohegan, D. B., Puretzky, A. A., and Allard, F., this symposium proceedings.Google Scholar
20 Geohegan, D. B. and Puretzky, A. A., p. 21 in Film Synthesis and Growth Using Energetic Beams, ed. by Atwater, H. A., Dickinson, J. T., Lowndes, D. H., and Polman, A., Materials Research Society, Pittsburgh, PA, 1995.Google Scholar
21 Geohegan, D. B., p. 115 in Pulsed Laser Deposition of Thin Films, ed. by Chrisey, D. B. and Hubler, G. K., Wiley, New York, 1994.Google Scholar
22 Vaudo, R. P., Cook, J. W. Jr., and Schetzina, J. F., J. Cryst. Growth 138, 430 (1994).Google Scholar
23 Nakao, T. and Uenoyama, T., Jpn. J. Appl. Phys. 32, 660 (1993).Google Scholar
24 Uenoyama, T., Nakao, T., and Suzuki, M., J. Cryst. Growth 138, 301 (1994).Google Scholar
25 Schaffler, R., Klose, M., Brieger, M., Dittrich, H., and Schock, H. W., Materials Science Forum 173174, 135 (1995).Google Scholar
26 Feiler, D., personal communication.Google Scholar
27 Moustakas, T. D. and Molnar, R. J., Mut. Res. Soc. Symp. Proc. 281, 753 (1993).Google Scholar
28 Nakamura, S.. Takashi, M., Senoh, M., and Iwasa, N.,. Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar