Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:45:30.926Z Has data issue: false hasContentIssue false

Pulsed Ion Beam Interface Melting of Ptcr and Crta Alloys on Si Structures

Published online by Cambridge University Press:  15 February 2011

C. J. Palmstrom
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
R. Fastow
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

Composition profiles of thermal and pulsed ion beam annealed PtCr/Si and CrTa/Si have been determined using Rutherford backscattering analysis. Thermal annealing resulted in layered phase separation with Pt-silicide in the PtCr/Si case, and CrSi 2 in the CrTa/Si case, forming at the Si surface. Pulsed ion beam annealing, 300–380 keV protons at energy densities ~0.75–1.6 J/cm2 , produced interface melting with no layered phase separation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hodgson, R. T., Baglin, J. E. E., Pal, R., Neri, J. M. and Hammer, D. A., Appl. Phys. Lett. 37, 187 (1980).Google Scholar
2.Baglin, J. E. E., Hodgson, R. T., Chu, W. K., Neri, J. M., Hammer, D. A. and Chen, L. J., Proc. of 5thIntern. Conf. on Ion Beam AnalysisSydney1981.Google Scholar
3.Chen, L. J., Hung, L. S., Mayer, J. W. and Baglin, J. E. E., Metastable Materials Formation by Ion Implantation, Materials Research Society, 319, (1982).Google Scholar
4.Chen, L. J., Hung, L. S., Mayer, J. W., Baglin, J. E. E., Neri, J. M. and Hammer, D. A., Appl. Phys. Lett. 40, 595 (1982).Google Scholar
5.Fastow, R., Gyulai, J. and Mayer, J. W.. This conference.Google Scholar
6.Tu, K. N., Hammer, W. N. and Olowolafe, J. O., J. Appl. Phys. 51, 1663 (1980).Google Scholar
7.Ottaviani, G., Tu, K. N., Mayer, J. W. and Tsaur, B. Y., Appl. Phys. Lett. 36, 331 (1980).Google Scholar
8.Mayer, J. W., Lau, S. S. and Tu, K. N., J. AppI. Phys. 50, 5855 (1979).Google Scholar
9.Eizenberg, M. and Tu, K. N., J. Appl. Phys. 53, 1577 (1982).Google Scholar
10.Olowolafe, J. O., Tu, K. N. and Angilello, J., J. Appl. Phys. 50, 6316 (1979).Google Scholar
11.Eizenberg, M., Ottaviani, G. and Tu, K. N., Appl. Phys. Lett. 37, 87 (1980).Google Scholar
12.Eizenberg, M., Thin Solid Films 89, 355 (1982).Google Scholar
13.Thompson, R., Eizenberg, M. and Tu, K. N., J. Appl. Phys. 52, 6763 (1981).Google Scholar
14.Harris, J. M., Lau, S. S., Nicolet, M.-A. and Nowicki, R. S., J. Electrochem. Soc. 123, 120 (1976).Google Scholar
15.Neri, J. M., Hammer, D. A., Ginet, G. and Sudan, R. N., Appl. Phys. Lett. 37, 101 (1980).Google Scholar
16.Palmstrom, C. J., Gyulai, J. and Mayer, J. W.. To be published.Google Scholar