Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:11:09.332Z Has data issue: false hasContentIssue false

PtRu Nanoparticle Catalytic Activity Enhanced by the Ligand Effect

Published online by Cambridge University Press:  15 March 2011

Shuji Goto
Affiliation:
Environment & Energy Technology Lab, Advanced Materials Laboratories, Sony Corporation, 4&16&1 Okata, Atsigi&shi, 243&0021, Japan
Yuli Li
Affiliation:
Environment & Energy Technology Lab, Advanced Materials Laboratories, Sony Corporation, 4&16&1 Okata, Atsigi&shi, 243&0021, Japan
Naomi Nagasawa
Affiliation:
Environment & Energy Technology Lab, Advanced Materials Laboratories, Sony Corporation, 4&16&1 Okata, Atsigi&shi, 243&0021, Japan
Tadashi Senoo
Affiliation:
Environment & Energy Technology Lab, Advanced Materials Laboratories, Sony Corporation, 4&16&1 Okata, Atsigi&shi, 243&0021, Japan
Kazuhiro Noda
Affiliation:
Environment & Energy Technology Lab, Advanced Materials Laboratories, Sony Corporation, 4&16&1 Okata, Atsigi&shi, 243&0021, Japan
Yoshihiro Kudo
Affiliation:
Materials Analysis Center, Advanced Materials Laboratories, Sony Corporation, 4&16&1 Okata, Atsigi&shi, 243&0021, Japan
Akihiro Maesaka
Affiliation:
Materials Analysis Center, Advanced Materials Laboratories, Sony Corporation, 4&16&1 Okata, Atsigi&shi, 243&0021, Japan
Tsuyonobu Hatazawa
Affiliation:
Vanguard Material Research Lab, Advanced Materials Laboratories, Sony Corporation, 4&16&1 Okata, Atsigi&shi, 243&0021, Japan
Get access

Abstract

We synthesized a methanol electrocatalyst with high activity and low noble metal content. The electrocatalyst consists of carbon&supported PtRu nanoparticles, which have 1-2 Pt monoatomic layers on Ru nanocores. In spite of the pure Pt surface, the catalyst showed high catalytic activity when used in the anode of a direct methanol fuel cell. Clearly the underlying Ru atoms modified the property of the surface Pt atoms, bringing about the high catalytic activity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Watanabe, M. and Motoo, S., J. Electroanal. Chem. Interfacial. Electrochem. 60, 267 (1975).Google Scholar
2. Nitani, H., Ono, T., Honda, Y., Koizumi, A., Nakagawa, T., Yamamoto, T., Daimon, H. and Kurobe, Y., Mater. Res. Soc. Symp. Proc. Vol. 900E, O09-12 (2006).Google Scholar
3. Schlapka, A., Lischka, M., Groß, A., Käsberger, U. and Jakob, P., Phys. Rev. Lett. 91, 016101 (2003).Google Scholar
4. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. and Eichhorn, B., Nature Materials 7, 333 (2008).Google Scholar
5. Piela, P., Eickes, C., Brosha, E., Garzon, F. and Zelenay, P., J. Electrochem. Soc., 151, A2053 (2004).Google Scholar
6. Webb, S. M., Physica Scripta T115, 1011 (2005).Google Scholar
7. Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C., and Eller, M. J., Phys. Rev. B 52, 2995 (1995).Google Scholar
8. Nashner, M. S.. Frenkel, A. I., Adler, D. L., Shapley, J. R. and Nuzzo, R. G., J. Am. Chem. Soc. 119, 7760 (1997).Google Scholar