Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:40:20.028Z Has data issue: false hasContentIssue false

Pseudo-Superlattices of Bi2Te3 Topological Insulator Films with Enhanced Thermoelectric Performance

Published online by Cambridge University Press:  30 August 2011

V. Goyal
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California, Riverside, California 92521 USA.
D Teweldebrhan
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California, Riverside, California 92521 USA.
A.A. Balandin
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California, Riverside, California 92521 USA.
Get access

Abstract

It was recently suggested theoretically that atomically thin films of Bi2Te3 topological insulators have strongly enhanced thermoelectric figure of merit. We used the “graphene-like” exfoliation process to obtain Bi2Te3 thin films. The films were stacked and subjected to thermal treatment to fabricate pseudo-superlattices of single crystal Bi2Te3 films. Thermal conductivity of these structures was measured by the “hot disk” and “laser flash” techniques. The room temperature in-plane and cross-plane thermal conductivity of the stacks decreased by a factor of ∼2.4 and 3.5 respectively as compared to that of bulk. The strong decrease of thermal conductivity with preserved electrical properties translates to ∼140-250% increase in the thermoelectric figure if merit. It is expected that the film thinning to few-quintuples, and tuning of the Fermi level can lead to the topological insulator surface transport regime with the theoretically predicted extraordinary thermoelectric efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goldsmid, H. J., Thermoelectric Refrigeration (Plenum, New York, 1964); D. M. Rowe, CRC Book on Thermoelectrics (CRC Press, 1995).Google Scholar
2. Dresselhaus, M. S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S. B. and Koga, T., Physics of the Solid State 41, 679 (1999).Google Scholar
3. Hicks, L. D., Dresselhaus, M. S., Phys. Rev. B. 47, 12727 (1993).Google Scholar
4. Balandin, A. and Wang, K.L., Phys. Rev. B. 58, 1544 (1998); A. Balandin and K.L. Wang, J. Appl. Phys. 84, 6149(1998).Google Scholar
5. Hasan, M.Z. and Kane, C.L., Rev. Mod. Phys. 82, 3045 (2010); X.-L. Qi and S.-C. Zhang, arXiv: 1008.2026.Google Scholar
6. Moore, J., Nature Phys. 5, 378 (2009).Google Scholar
7. Ghaemi, P., Mong, R.S.K. and Moore, J.E., Phys. Rev. Lett. 105, 166603 (2010); F. Zahid and R. Lake, Appl. Phys. Lett., 97, 212102(2010).Google Scholar
8. Teweldebrhan, D., Goyal, V. and Balandin, A.A., Nano Lett. 10, 1209 (2010); D. Teweldebrhan, V.Goyal, M. Rahman, and A. A. Balandin, Appl. Phys. Lett. 96, 053107(2010).Google Scholar
9. Barnett, S.A. and Shinn, M., Annu. Rev. Mater. Sci. 24, 481 (1994); S. Tamura and F. Nori, Phys. Rev. B. 41, 7941(1990).Google Scholar
10. Kullmann, W., Geurts, J., Richter, W., Lehner, N., Rauh, H., Steigenberger, U., Eichhorn, G. and Geick, R., Phys. Stat. Sol. (b) 125, 131 (1984); W. Richter, H. Kohler and C. R. Becker, Phys. Stat. Sol. (b)84, 619 (1977).Google Scholar
11. Shahil, K.M.F., Hossain, M.Z., Teweldebrhan, D. and Balandin, A.A., Appl. Phys. Lett. 96, 153103 (2010)Google Scholar
12. Gustafsson, S. E., Rev. Sci. Instrum. 62, 797 (1991).Google Scholar
13. Ghosh, S., Teweldebrhan, D., Morales, J. R., Garay, J. E., and Balandin, A. A., J. Appl. Phys. 106, 113507 (2009); R. Ikkawi, N. Amos, A. Lavrenov, A. Krichevsky, D. Teweldebrhan, S. Ghosh, A.A. Balandin, D. Litvinov, S. Khizroev, J. Nanoelectron. Optoelectron. 3, 44(2008).Google Scholar
14. Goyal, V., Teweldebrhan, D., and Balandin, A. A., Appl. Phys. Lett. 97, 133117 (2010).Google Scholar
15. Satterthwaite, C. B. and Ure, R. W. Jr., Phys. Rev. 108, 1164 (1957).Google Scholar
16. Dirmyer, M.R., Martin, J., Nolas, G.S., Sen, A., Badding, J.V., Small 5, 933 (2009).Google Scholar
17. Chiritescu, C., Mortensen, C., Cahill, D.G., Johnson, D. and Zschack, P., J. Appl. Phys. 106, 073503 (2009).Google Scholar
18. Ben-Yehuda, O., Shuker, R., Gelbstein, Y., Dashebsky, Z. and Dariel, M.P., J. Appl. Phys. 101, 113707 (2007).Google Scholar
19. Cahill, D., Watson, S., Pohl, R., Phys. Rev. B. 46, 6131 (1992).Google Scholar