Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:05:47.701Z Has data issue: false hasContentIssue false

Pseudopotential Methods for Superlattices: Applications to Mid-Infrared Semiconductor Lasers

Published online by Cambridge University Press:  10 February 2011

G. C. Dente
Affiliation:
GCD Associates, Albuquerque, NM 87110, [email protected]
M. L. Tilton
Affiliation:
Boeing Defense and Space Group, Albuquerque, NM 87106
Get access

Abstract

Calculations of optoelectronic properties for superlattice materials require accurate subband energies, wavefunctions and radiative matrix elements. We have recently begun using a solution method based on the Empirical Pseudopotential Method, or EPM. This method shows particular strength in analyzing structures with short periods or thin layers, for which the standard method, based on k,p perturbation theory and the envelope function approximation, may be problematical. We will describe the EPM applied to bulk solids and then demonstrate our direct generalization of the method for applications to superlattice structures. Finally, we will apply the EPM method to several type II superlattice samples and compare the predictions to absorbance spectroscopy data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Smith, D. L., Mailhiot, C, Rev. of Mod. Phys., Vol. 62, no. 1, 173234, Jan. 1990.Google Scholar
[2] Wood, D. M., Zunger, A., Phys. Rev. B, Vol. 53, no. 12,79497963, Mar. 1995.Google Scholar
[3] Dente, G. C. and Tilton, M. L., J.Appl. Phys., 86, 1420 (1999).Google Scholar
[4] Yu, P. Y., Cordona, M., Fundamentals of Semiconductors, Springer, 1996.Google Scholar
[5] Harrison, W. A., Electronic structure and the properties of solids, The physics of the chemical bond, W. H. Freeman and Company, 1980.Google Scholar
[6] Cohen, M. L., Physics Today, 4047, July 1979.Google Scholar
[7] Kittel, C., Quantum theory of solids, John Wiley & Sons, 1963.Google Scholar
[8] Garbow, B. S., Boyle, J. M., Dongarra, J. J., Moler, C. B., Matrix eigensystem routines-EISPACK guide extension, Vol. 51, Lecture notes in Computer Science, Springer-Verlag, New York, Berlin, 1977.Google Scholar
[9] , Landolt-Bornstein, Numerical data and functional relationships in science and technology, Springer-Verlag Berlin Heidelberg, 1987.Google Scholar
[10] Ram-Mohan, L. R. (Private Communications).Google Scholar
[11] Sai-Halasz, G. A., Tsu, R., Esaki, L., Appl. Phys. Lett., Vol. 30, no. 12, 651653, 1977.Google Scholar
[12] Meyer, J. R., Hoffman, C. A., Bartoli, F. J., Ram-Mohan, L. R., Appl. Phys. Lett., Vol. 67, no. 6, 757759, Aug. 1995.Google Scholar
[13] Bewley, W. W., Vurgaftman, I., Felix, C. L. et al. , J. Appl. Phys., Vol. 83, no. 5, 23842391, Mar. 1998.Google Scholar
[14] Le, H. Q., Lin, C. H., Pei, S. S., Appl. Phys. Lett., Vol. 72, no. 26, Jun. 1998.Google Scholar