Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:24:53.206Z Has data issue: false hasContentIssue false

Pseudomorphic HEMT Devices for Microwave and Millimeter Wave Applications

Published online by Cambridge University Press:  22 February 2011

C.S. Wu
Affiliation:
Gallium Arsenide Operations Hughes Aircraft Company 3100 West Lomita Boulevard, Torrance, CA 90509
G.L. Lan
Affiliation:
Gallium Arsenide Operations Hughes Aircraft Company 3100 West Lomita Boulevard, Torrance, CA 90509
C.K. Pao
Affiliation:
Gallium Arsenide Operations Hughes Aircraft Company 3100 West Lomita Boulevard, Torrance, CA 90509
S.X. Bar
Affiliation:
Gallium Arsenide Operations Hughes Aircraft Company 3100 West Lomita Boulevard, Torrance, CA 90509
M. Hu
Affiliation:
Gallium Arsenide Operations Hughes Aircraft Company 3100 West Lomita Boulevard, Torrance, CA 90509
Get access

Abstract

Pseudomorphic HEMT (PHEMT) devices have demonstrated superior performance at microwave and millimeter wave frequency ranges. They exhibit multi-functional characteristics such as high power, high efficiency and low noise over a broad frequency range (C-band through W-band). Because of their important, broad range of applications, the microwave industry has recently begun developing the PHEMT manufacturing technology in order to cope with the increasing demand for PHEMT insertion into microwave products. In this paper we will discuss the advantages of using PHEMT devices for microwave and millimeter wave applications and provide an overview of the published state-ofthe-art performance of PHEMT devices and monolithic microwave integrated circuits (MMICs) at microwave and millimeter wave frequencies. We will also present recent progress in Hughes PHEMT technology development including device epitaxial design and process enhancements. Finally, we will present recent data on PHEMT reliability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Tserng, H.Q., Kim, B., Saunier, P., Shih, H.D. and Khatibzadeh, M.A., “Millimeter-Wave Power Transistors and Circuits”, Microwave Journal, pp. 125135, April, 1989 Google Scholar
(2) Smith, P.M., Chao, P.C., Lester, L.F., Smith, R.P., Lee, B.R., Ferguson, D.W., Jabra, A.A., Ballingall, J.M. and K.Duh, H.G., “InGaAs Pseudomorphic HEMTs for Millimeter Wave Power Applications”, 1988 IEEE MTT-S Digest, pp. 927930 Google Scholar
(3) Smith, P.M., Kao, M.Y., Ho, P., Chao, P.C., K.Duh, H.G., Jabra, A.A., Smith, R.P. and Ballingall, J.M., “A 0.151rm Gate-Length Pseudomorphic HEMT”, 1989 IEEE MTT-S Digest, pp. 983986 Google Scholar
(4) Chao, P.C., Smith, P.M., Duh, K.H.G. and Ballingall, J.M., “V- and W-Band Power and Low-Noise HEMTs”, Extended Abstracts of the 21st Conference on Solid State Devices and Materials, Tokyo, 1989, pp. 277280 Google Scholar
(5) Smith, P.M., Chao, P.C., Ballingall, J.M. and Swanson, A.W., “Microwave and mm-Wave Power Application Using Pseudomorphic HEMTs”, Microwave Journal, May, 1990, pp. 7186.Google Scholar
(6) Chen, T.H., Tan, K.L., Dow, G.S., Wang, H., Chang, K.W., Ton, T.N., Allen, B., Berenz, J., Liu, P.H., Streit, D. and Hayashibara, G., “A 0.1-W W-band Pseudomorphic HEMT MMIC Power Amplifier”, GaAs IC Symp. Dig., pp 71-74 (1992)Google Scholar
(7) Tan, K.L. et al. , “94 GHz 0.1 gim T-gate Low Noise Pseudomorphic InGaAs HEMTs”, IEEE Electronic Device Lett., vol. 11, pp. 585587, 1990 Google Scholar
(8) Wang, H., Ton, T.N., Tan, K.L., Garske, D., Dow, G.S., Berenz, J., Pospieszalski, M.W. and Pan, S.K., “A D-Band Monolithic Low Noise Amplifier” GaAs IC Symp. Digest, pp.2326, 1992 Google Scholar
(9) Shanfield, S., Platzker, A., Aucoin, L., Kazior, T., Patel, B.I., Bertrand, A., Hoke, W., Lyman, P., “One Watt, Very High Efficiency, 10 and 18 GHz Pseudomorphic HEMTs Fabricated by Dry First Recess Etching”, 1992 IEEE MTT-S Digest, pp. 639641.Google Scholar
(10) Huang, J.C., Jackson, G., Shanfield, S., Hoke, W., Lyman, P., Atwood, D., Saledas, P., Schindler, M., Tajimaa, Y., Platzker, A., Massd, D. and Staz, H., “An AlGaAs/InGaAs Pseudomorphic High Electron Mobility Transistor (PHEMT) For X- and Ku-band Power Applications”, 1991 IEEE MTT-S Digest, pp. 713716 Google Scholar
(11) Wu, C.S. et al. “High Breakdown Voltage Power PHEMT Devices Processed with Single Gate Recess and Damage-Free RIE Techniques” to be published.Google Scholar
(12) Kurdoghlian, A., Wu, C.S., Yau, W., Chen, J., Hu, M., Pao, C.K. and Bosch, D., “The Demonstration of Ka-band Multi-functional MMIC Circuits Fabricated on the Same PHEMT Wafer with Superior Performance” published in 1993 IEEE MTT-S International Microwave Symp. DigestGoogle Scholar
(13) Wu, C.S., Hu, M., Bar, S.X., Pao, C.K., Kanber, H., Paine, B.M. and Yau, W., “High Yield Pseudomorphic HEMT Manufacturing Technology Development”, Proceeding of 1993 U.S. Conference on GaAs Manufacturing Technology, Poster Presentation, pp. 4142 Google Scholar
(14) Hu, W.W., Chao, P.C., Kao, M.Y., Ho, P., Finke, R.J. and Swanson, A.W., “Reliability of State-of-the-Art GaAs Pseudomorphic Low-Noise HEMTs”, GaAs IC Symp. Digest, pp. 191194, 1991 Google Scholar
(15) Saito, Y., Jones, W., Lizandro, C.J., Mai, K., Perry, C., Wiltz, J., Claxton, S., Esfandiari, R. and Rezek, E., “Reliability Testing of State-of-the-Art PM HEMT MMICs Three-Stage Low-Noise Amplifier”, GaAs IC Symp. Digest, pp. 153156, 1992 Google Scholar
(16) Jha, A.R., “Parametric Analysis for a Millimeter Wave Low Noise High Electron Mobility Transistor”, International Journal of Infrared and Millimeter Waves, vol. 9, pp.249256, 1988 Google Scholar
(17) Park, D.H. and Brennan, K.F., “Monte Carlo Simulation of a Submicron pseudomorphic GaAsAs/InGaAs/GaAs HEMT”, SPIE vol. 1144 Indium Phosphide and Related Materials for Advanced Electronic and Optical Devices, pp.610618, 1989 Google Scholar
(18) Smith, P.M. and Swanson, A.W., “HEMTs - Low Noise and Power Transistors for 1 to 100 GHz,” Applied Microwave, pp. 6372, May, 1989.Google Scholar
(19) Metze, G., Cornfeld, A., Singer, J., Carlson, H., Chang, E., Kirkendall, T., Dahrooge, G., Bass, J., Hung, H-L. and Lee, T., “Monolithic V-band Pseudomorphic-MODFET Low-Noise Amplifier,” 1989 IEEE Microwave and Millimeter-Wave Monolithic Symposium, pp. 111116,1989.Google Scholar
(20) Wang, H., Ton, T.H., Tan, K.L., Dow, G.S., Chen, T.H., Chang, K.W., Berenz, J., Allen, B., Liu, P., Streit, D., Hayashibara, G. and L.C. Liu, T., “An Ultra Low Noise W-band Monolithic Three-Stage Amplifier Using 0.1 gm Pseudomorphic InGaAs/GaAs HEMT Technology,” 1992 IEEE MTT-S International Microwave Symposium Digest, pp. 803806 Google Scholar
(21) Tan, K.L., Streit, D.C., Dia, R.M., Wang, S.K., Han, A.C., Chow, P.-M. D., Trinh, T.Q., Liu, P.H., Velebir, J.R. and Yen, H.C., “High-Power V-Band Pseudomorphic InGaAs HEMI”, IEEE Electron Device Lett., vol. 12, pp. 213214, 1991.Google Scholar
(22) Kim, B. et al. , “Millimeter-Wave Power Operation of an AlGaAs/InGaAs/GaAs Quantum well MISFET,” IEEE Trans. Electron Device Lett., vol. 36, October, 1989.Google Scholar
(23) Tserng, H.Q., Kim, B., Saunier, P., Shih, H.D. and Khatibzadeh, M.A., “Millimeter-Wave Power Transistors and Circuits,” Microwave Journal, pp. 125135, April, 1989.Google Scholar
(24) Tserng, H.Q. et al. , “High Efficiency Broadband Monolithic Pseudomorphic HEMT Amplifiers at Ka-Band”, IEEE 1992 Microwave abd Millimeter-Wave Monolithic Circuits Symp., pp. 5154 Google Scholar
(25) Pao, C.K., Lan, G.L., Wu, C.S., Igawa, A., Hu, M., Chen, J.C. and Shih, Y.C., “Vband High-Efficiency, Monolithic Pseudomorphic HEMT Power Amplifiers”, IEEE Microwave and Guided Wave Letters, vol.2, pp. 394396 (1992)Google Scholar
(26) Le, H. et al. , “An X-band High-Efficiency Ion-Implanted MMIC Power Amplifier,” 1991 IEEE MTT-S International Microwave Symposium Digest, pp. 323325,1991.Google Scholar
(27) Lan, G. L., Pao, C. K., Wu, C.S. et al. , “V-band pseudomorphic MMIC Phased Array Components for Space Communications,” 1992 JPL Monolithic Microwave Integrated Circuit Space and Ground Applications Symposium Digest, “April 1992.Google Scholar
(28) Wang, H. et al. , “A Monolithic V-Band Upconvertor Using 0.2 gm InGaAs/GaAs Pseudomorphic HEMT Technology” 1992 IEEE MTT-S Digest, pp. 10591062 Google Scholar
(29) Chang, K. W. et al. , “A W-band Monolithic Pseudomorphic InGaAs HEMT Downconverter,” 1991 IEEE Microwave and Millimeter-Wave Monolithic Symposium, pp. 5558, 1991.Google Scholar
(30) Plana, R. et al. , “Noise in AlGaAs/InGaAs/GaAs Pseudomorphic HEMT's from 10 Hz to 18 GHz,” IEEE Trans. Electron Device Lett., vol. 40, no. 5, May 1993.Google Scholar
(31) Wu, C.S., Yu, K.K., Hu, M. and Kanber, H., “Optimization of Ohmic Contacts for Reliable Heterostructure GaAs Materials”, J. of Electronic Materials, 19, pp.12651271 (1990)Google Scholar
(32) Chang, E.Y., Cibuzar, G.T. and Pande, K. P., “Passivation of GaAs FETs with PECVD Silicon Nitride Films of Different Stress States”, IEEE Trans. Electron Devices, vol. ED–35, pp.14121418, 1988 Google Scholar
(33) Ren, F., Pearton, S.J., Abernathy, C.R., Wu, C.S., Hu, M., Pao, C.K., Wang, D.C. and Wen, C.P., “0.25-1tm Pseudomorphic HEMT's Processed with Damage-free Dry-etch Gate-recess Technology”, IEEE Trans on Electron Devices, vol. 39, pp.27012706, 1992 Google Scholar
(34) Christou, A. and Hu, J.M.,”The Effect of Defects and Interfacial Stress on InGaAs/GaAs Heterojunction FET Reliability”, Symp. Gallium Arsenide and Related Compounds, pp.223226, 1991 Google Scholar