Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:50:10.884Z Has data issue: false hasContentIssue false

Pseudohamiltonians and Quantum Monte Carlo

Published online by Cambridge University Press:  01 January 1992

A. Bosin
Affiliation:
Dipartimento di Scienze Fisiche, Università di Cagliari, 09124 Cagliari, ITALY
V. Fiorentini
Affiliation:
Dipartimento di Scienze Fisiche, Università di Cagliari, 09124 Cagliari, ITALY Fritz-Haber-Institut der Max-Planck-Gesellschaft, W-l Berlin 33, GERMANY
A. Lastri
Affiliation:
Dipartimento di Fisica, Università di Trento, 38050 Povo (TN), ITALY
G. B. Bachelet
Affiliation:
Dipartimento di Fisica, Università di Roma “La Sapienza”, 00185 Roma, ITALY
Get access

Abstract

A new method is presented for the generation of valence-only local hamiltonians, or pseudohamiltonians, within the DFT-LDA framework. At the moment these promise to be very useful tools to overcome the problem of eliminating the core electrons from many QMC calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hammond, B. L., Reynolds, P. J. and Lester, W. A. Jr. Phys. Rev. Lett. 61, 2312 (1988); Fahy, S., Wang, X. W. and Louie, S. G., Phys. Rev. B 42, 3503 (1990); MitaáŠ, L., Shirley, E. L. and Ceperley, D. M., J. Chem. Phys. 95, 3467 (1991)Google Scholar
2. Bachelet, G. B., Ceperley, D. M. and Chiocchetti, M. G. B., Phys. Rev. Lett. 62, 2088 (1989); Chiocchetti, M. G. B., Test di laurea, Università di Trento, 1988 Google Scholar
3. Li, X. P., Ceperley, D. M. and Martin, R. M., Phys. Rev. B 44, 10929 (1991)Google Scholar
4. Ceperley, D. M., J. Stat. Phys. 43, 815 (1986)Google Scholar
5. Phillips, J. C. and Kleinman, L., Phys. Rev. 116, 5084 (1959)Google Scholar
6. Hamann, D. R., Schlüter, M. and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979)Google Scholar
7. Reynold, P. J., Ceperley, D. M., Alder, B. J. and Lester, W. A. Jr., J. Chem. Phys. 77, 5593 (1982)Google Scholar
8. Bosin, A., Tesi di laurea, Università di Trento, 1990 Google Scholar
9. Foulkes, W. M. C. and Schlüter, M., Phys. Rev. B 42, 11505 (1990)Google Scholar
10. Lastri, A., Tesi di laurea, Università di Trento, 1991 Google Scholar
11. Dreizler, R. M. and Gross, E. K. U., Density Functional Theory (Springer-Verlag, Berlin, 1990); P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)Google Scholar
12. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E., J. Chem. Phys. 77, 1087 (1953); Kirkpatrik, S., Gelatt, C. D. and Vecchi, M. P., Science 220, 671 (1983); P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications,(D. Reidel Publishing Company, Dordrecht, 1987)Google Scholar
13. Vanderbilt, D. and Louie, S. G., J. Comp. Phys. 56, 259 (1984)Google Scholar
14. Bachelet, G. B., Hamann, D. R. and Schlüter, M., Phys. Rev. B 26, 4199 (1982)Google Scholar
15. Pickett, W. E., J. Computer Physics Reports 9, 115 (1989)Google Scholar
16. Landolt-Börnstein, , Vol. 17a and 22a, edited by Hellwege, K. H. and Madelung, O. (Springer, Berlin, 1987)Google Scholar
17. Methfessel, M., Phys. Rev. B 38, 1537 (1988)Google Scholar
18. Fiorentini, V., Methfessel, M. and Schemer, M. (submitted to Phys. Rev. B)Google Scholar
19. Fiorentini, V., Bosin, A., Continenza, A., Bachelet, G. B. and Lastri, A. (to be published)Google Scholar
20. Focher, P., Lastri, A., Covi, M. and Bachelet, G. B., Phys. Rev. B 44, 8486 (1991); P. Focher, Tesi di laurea, Università di Trento, 1989Google Scholar
21. Menchi, M., Bosin, A., Bachelet, G. B. and Meloni, F., to be presented at the 1992 MRS Fall Meeting, Boston, MA, 1992; Menchi, M., Tesi di laurea, Università di Cagliari, 1992 Google Scholar