Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:27:38.470Z Has data issue: false hasContentIssue false

Pseudoelasticity in High Strengthening Fcc Single Crystals

Published online by Cambridge University Press:  10 February 2011

Yu.I. Chumlyakov
Affiliation:
Siberian Physical Technical Institute, 1, Revolution sq., Tomsk 634050, Russia, [email protected]
I. V. Kireeva
Affiliation:
Siberian Physical Technical Institute, 1, Revolution sq., Tomsk 634050, Russia, [email protected]
G. S. Kapasova
Affiliation:
Siberian Physical Technical Institute, 1, Revolution sq., Tomsk 634050, Russia, [email protected]
E. I. Litvinova
Affiliation:
Siberian Physical Technical Institute, 1, Revolution sq., Tomsk 634050, Russia, [email protected]
Get access

Abstract

It was experimentally shown that the achievement of a high deforming stress level due to dispersion hardening and solid solution strengthening of FCC single crystals with a low stacking-fault energy leads to the deformation mechanism changing from slip to twinning, the dependence of mechanical properties on a crystal orientation and a sign of applied stresses. During deformation by twinning at T<150–300K effects of pseudoelasticity associated with elastic twinning is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Otsuka, K. and Shimizu, K., Metals Forum 4 (4), 142152 (1981).Google Scholar
2. Boiko, V.S., Garber, R.I. and Kosevich, A.M., Reversible plasicity of crystals. (Fizmatlit of Nauka Publishers, Moscow, 1991), p. 237.Google Scholar
3. Mahajan, S., Williams, D.F., Int. Met. Rev. 18 (179), 4361 (1973).Google Scholar
4. Venables, J.A., J. Phys. and Chem. Solids, 25 (7), 693700 (1964).Google Scholar
5. Venables, J.A., Phyl. Mag. 6 (63), 379396 (1961).Google Scholar
6. Green, M.L., Cohen, M., Acta Met. 27 (9), 15231538 (1979).Google Scholar
7. Kubin, L.P., Fourdeu, A., Guedou, I.Y., Rien, I., Phil. Mag. A. 46, 357378 (1982).Google Scholar
8. Brown, L.M., Stobbs, W.M., Phyl. Mag. 23 (185), 1185 (1971).Google Scholar
9. Ashby, M.F. in Strengthening Methods in Crystals, edited by Kelly, A., and Nickolson, P. (Elsevier Science Publishers, New York, 1971), pp. 137152.Google Scholar
10. Chan, J.W., Acta Met. 25, 10211026 (1977).Google Scholar
11. Adler, P.H., Olson, G.B. and Owen, W.S., Metal. Trans. 17A, 17251737 (1986).Google Scholar
12. Chumlyakov, Yu.I., Korotaev, A.D., Izvestiya Vuz. Fizika (Russian Physics Journal) 35 (9), 783–779 (1992).Google Scholar
13. Chymlyakov, Yu.I., Kireeva, I.V., Korotaev, A.D., Litvinova, E.I., Zuev, Yu.L., Izvestiya Vuz. Fizika (Russian Physics Journal) 39 (3), 189210 (1996).Google Scholar
14. Copley, S.M., Kear, B.N., Acta Met. 16 (2), 227231 (1968).Google Scholar