Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:43:12.470Z Has data issue: false hasContentIssue false

Proton Irradiation Effects on Scandium Oxide/Gallium Nitride MOS Diodes

Published online by Cambridge University Press:  21 March 2011

K. Allums
Affiliation:
Department of Materials Science and Eng., University of Florida, Gainesville, FL 32611
B. Luo
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
R. Mehandru
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
B. P. Gila
Affiliation:
Department of Materials Science and Eng., University of Florida, Gainesville, FL 32611
R. Dwivedi
Affiliation:
Center of Applied Radiation Research, Prairie View A&M University, Prairie View, TX 77446
T.N. Fogarty
Affiliation:
Center of Applied Radiation Research, Prairie View A&M University, Prairie View, TX 77446
R. Wilkins
Affiliation:
Center of Applied Radiation Research, Prairie View A&M University, Prairie View, TX 77446
C. R. Abernathy
Affiliation:
Department of Materials Science and Eng., University of Florida, Gainesville, FL 32611
F. Ren
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Eng., University of Florida, Gainesville, FL 32611
Get access

Abstract

The stability to proton radiation of GaN metal oxide semiconductor (MOS) diodes fabricated using the novel gate dielectric Sc2O3 was investigated. The MOS diodes were fabricated by depositing the dielectric with molecular beam epitaxy onto MOCVD-grown GaN on sapphire. The stability of GaN Schottky diodes was also investigated for comparison. Current-voltage (I-V) and capacitance-voltage (C-V), were employed to monitor any change in the electrical characteristics of the diodes. Preliminary testing indicates that the GaN-based diodes are in fact affected by proton irradiation, but only at fairly high doses. Doses equivalent to 10 years in low earth orbit, ~5x109cm-2, produce a decrease in the reverse breakdown field in both Schottky and MOS diodes. However, even after irradiation, the GaN MOS diodes showed twice the reverse breakdown voltage of non-irradiated Schottky diodes. Further, while the Schottky diodes showed reduced forward breakdown voltage, the MOS diodes showed no change in forward breakdown. These results suggest that the oxide/GaN interface is stable and is not being damaged by the radiation. The change in reverse breakdown is most likely due to generation of damage in the GaN resulting in the formation of shallow donors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nguyen, C., Nguyen, N.X., and Grider, D. E.. Electron. Lett., 35, 1380(1999).Google Scholar
2. Simin, G., Hu, X., Ilinskaya, N., Zhang, J., Tarakji, A., Kumar, A., Yang, J., Khan, M. Asif, Gaska, R., and Shur, M. S.. IEEE Electron Dev. Lett., 22, 53(2001).Google Scholar
3. Daumiller, I., Theron, D., Gaquiere, C., Vescan, A., Dietrich, R., Wieszt, A., Leier, H., Vetury, R., Mishra, U. K., Smorchkova, I. P., Keller, S., Nguyen, N. X., Nguyen, C., and Kohn, E.. IEEE Electron Dev. Lett., 22, 62(2001).Google Scholar
4. Morkoç, H., Cingolani, R. and Gil, B.. Solid-State Electron., 43, 1909(1999).Google Scholar
5.See for example, the papers in the Special Issue on Group III-V Semiconductor Electronics, ed. Mishra, V. K. and Zolper, J. C., IEEE Trans. Electron. Dev., 48, 405608(2001).Google Scholar
6. Trew, R. J.. IEEE Microwave. Mag., 1, 46(2000).Google Scholar
7. Osinski, M., Perlin, P., Schone, H., Paxton, A. H., and Taylor, E. W.. Electron. Lett., 33, 1252(1997).Google Scholar
8. Khanna, S. M., Webb, J. Tang, H., Haudayer, A. J. and Carlone, C., IEEE Trans. Nuclear Science, 47, 2322(2000).Google Scholar
9. Look, D. C., Reynolds, D. C., Hemsky, J. W., Sizelove, J. R., Jones, R. L. and Molnar, R. J.. Phys. Rev. Lett., 79, 2273(1997).Google Scholar
10. Cai, S. J., Tang, Y. S., Li, R., Wei, Y. Y., Wong, L., Chen, Y. L., Wang, K. L., Chen, Mary, Zhao, Y. F., Schrimpf, R. D., Keay, J. C., Galloway, K. F.. IEEE Trans. Electron. Dev., 47, 304(2000).Google Scholar
11. Luo, B., Johnson, J. W. and Ren, F., Allums, K. K., Abernathy, C. R. and Pearton, S. J., Dwivedi, R., Fogarty, T. N. and Wilkins, R., Dabiran, A. M., Wowchack, A. M., Polley, C. J. and Chow, P. P., Baca, A. G., Applied Physics Letters. 79, 14(2001).Google Scholar
12. Gila, B.P., Johnson, J.W., Mehandru, R., Luo, B., Onstine, A.H., Allums, K.K., Krishnamoorthy, V., Bates, S., Abernathy, C. R., Ren, F., Pearton, S. J... to be published in Phys.Sol.State.(2001)Google Scholar
13. Dressendorfer, P.V., Ma, T.P. Ionizing Radiation Effects in MOS Devices and Circuits. Wiley, New York. 1989.Google Scholar