Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:04:42.091Z Has data issue: false hasContentIssue false

Proton Effects in KTiOPO4

Published online by Cambridge University Press:  21 February 2011

P. A. Morris
Affiliation:
E. I. du Pont de Nemours & Co., Experimental Station, Wilmington, DE 19880
M. K. Crawford
Affiliation:
E. I. du Pont de Nemours & Co., Experimental Station, Wilmington, DE 19880
M. G. Roelofs
Affiliation:
E. I. du Pont de Nemours & Co., Experimental Station, Wilmington, DE 19880
J. D. Bierlein
Affiliation:
E. I. du Pont de Nemours & Co., Experimental Station, Wilmington, DE 19880
P. K. Gallagher
Affiliation:
AT & T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
G. Gashurov
Affiliation:
Airtron, Litton Systems, Inc., E. Hanover Ave., Morris Plains, NJ 07950
G. M. Loiacono
Affiliation:
Philips Laboratories, Scarborough Rd., Briarcliff Manor, NY 10510
Get access

Abstract

Evidence supporting the temperature dependent defect mechanism of nonstoichiometry on the potassium and oxygen sublattices in KTP is presented. The primary compensating defects for the formation of vacant potassium sites in typical flux grown KTP are vacant oxygen sites. Protons (OH-) are the principal defect compensating for the formation of vacant potassium sites in high temperature hydrothermal KTP. A model of the ionic conductivity in high temperature hydrothermal KTP is proposed in which specific protons participate in cooperative motion over a limited distance with the potassium vacancies migrating along the “channels” in the structure in the Z-direction. The higher activation energy measured for ionic conductivity in flux grown KTP (0.5 eV) relative to high temperature hydrothermal (0.3 eV) is suggested to be due to the energy required to dissociate from a defect complex, such as a (VO - VK). The correlation of ionic conductivity to damage susceptibility appears to be due to the levels of compensating defects for vacant potassium sites in KTP, which are related to the concentrations of Ti3+ formed in the crystals. Further study is ongoing to understand the specific mechanisms involved in the ionic conductivity and damage in KTP grown by the flux and hydrothermal techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zumsted, F.C., Bierlein, J.D., Gier, T.E., J. Appl. Phys. 42 (11), 4980 (1976).CrossRefGoogle Scholar
[2] Bierlein, J.D., Arweiler, C.B., Appl. Phys. Lett. 42 (15), 917 (1986).CrossRefGoogle Scholar
[3] Bierlein, J.D., SPIE Proc. 994, 160 (1988).Google Scholar
[4] Vanherzeele, J., Bierlein, J.D., Zumsted, F.C., Appl. Optics 27 (16) 3314 (1988).Google Scholar
[5] Gier, T.E., U.S. Patent No. 4,305,778 (15 December 1981).Google Scholar
[6] Laudise, R.A., Cava, R.J., Coporaso, A.J., J. of Crys. Growth 74, 275 (1986).Google Scholar
[7] Belt, R.F., Gashurov, G., Laudise, R.A., SPIE Proc. 968, 100 (1988).CrossRefGoogle Scholar
[8] Jacco, J.C., Loiacono, G.M., Jaso, M., Mizell, G., Greenberg, B., J. Crys. Growth 70, 484 (1984).CrossRefGoogle Scholar
[9] Bordui, P.F., Jacco, J.C., Loiacono, G.M., J. Crys. Growth 84, 403 (1987).CrossRefGoogle Scholar
[10] Dezhong, S., Chaoen, J., Prog. Crys. Growth and Charact. 11, 269 (1985).CrossRefGoogle Scholar
[11] Defan, C., Zhegtang, Y., J. Crys. Growth 79, 974 (1986).Google Scholar
[12] Morris, P.A., Crawford, M.K., Ferretti, A., French, R.H., Roelofs, M.G., Bierlein, J.D., Brown, J.B., Optical Materials: Processing and Science Vol.152 (Mat. Res. Soc., Pittsburg, PA, 1989) p. 95.Google Scholar
[13] Guerra, V., Chouinard, M., personal communication.Google Scholar
[14] Driscoll, T.A., Hoffman, H.J., Stone, R.E., J. Opt. Soc. Am. B 3 (5), 683 (1986).Google Scholar
[15] Lemeshko, V.V., Obukhovskii, V.V., Stoyanov, A.V., Pavlova, N.I., Pisanskii, A.I., Korotkov, P.A., Ukr. Fiz. Zh. Russ. Ed. 31 (11), 1745 (1986).Google Scholar
[16] Roelofs, M.G., J. Appl. Phys. 65 (12), 4976 (1989).CrossRefGoogle Scholar
[17] Ahmed, F., Belt, R.F., Gashurov, G., J. Appl. Phys. 60 (2), 839 (1986).Google Scholar
[18] Torjman, I., Masse, R., Guitel, J.C., Z. Kristallogr. 139, 103 (1974).Google Scholar
[19] Kalesinkas, V.A., Pavlova, N.I., Rez, I.S., Grigas, J.P., Sov. Phys. Collect. 22, 68 (1982).Google Scholar
[20] Yanovskil, V.K., Voronkova, V.I., Sov. Phys. Solid State 27 (7), 1308 (1985).Google Scholar
[21] Voronkova, V.I., Yanovskil, V.K., Neorg. Mat. 24 (12), 2062 (1988).Google Scholar
[22] Archer, W.I., Armstrong, R.D., Electrochemisry (Specialist Periodical Repts.) Vol.7 (1980) p. 157.Google Scholar
[23] Northern Analytical Laboratory, Amherst, NH.Google Scholar
[24] Dickens, P.G., Crouch-Baker, S., Weller, M.T., Sol. State Ionics 18, 19, 89 (1986).Google Scholar
[25] Lee, W.K., Nowick, A.S., Sol. State Ionics 18, 19, 989 (1986).CrossRefGoogle Scholar
[26] Sherban, T., Lee, W.K., Nowick, A.S., Sol. State Ionics 28–30, 585 (1988).Google Scholar
[27] Kingery, W.D., Bowen, H.K., Uhlmann, D.R., Introduction to Ceramics, 2end Ed. (J. Wiley, NY, 1976) p. 150.Google Scholar