Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:02:45.276Z Has data issue: false hasContentIssue false

Protocrystalline Growth of Silicon below 80°C

Published online by Cambridge University Press:  17 March 2011

Christian Koch
Affiliation:
Institut für Physikalische Elektronik, Univ. Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, GermanyEmail:[email protected]
Manabu Ito
Affiliation:
Institut für Physikalische Elektronik, Univ. Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany on leave of TOPPAN Printing Co., Ltd., Japan
Vlado Svrcek
Affiliation:
Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 000 Prague 6, Czech Republic
Markus B. Schubert
Affiliation:
Institut für Physikalische Elektronik, Univ. Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Jürgen H. Werner
Affiliation:
Institut für Physikalische Elektronik, Univ. Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

Protocrystalline silicon deposited at temperatures below 80°C exhibits an extraordinary photosensitivity and superior stability against light-soaking. This material growths at the borderline of the amorphous and nanocrystalline phases in plasma-enhanced chemical vapor deposition. After thermal annealing and subsequent light-soaking, the photosensitivity is comparable to the values after deposition, while amorphous silicon strongly drops off. A structural and optical characterization reveals a small fraction of silicon crystallites embedded in an amorphous well-ordered matrix. We investigate the morphology of silicon films deposited at the edge of crystallinity by the absolute Constant Photocurrent Method and observe a phase transition from amorphous to nanocrystalline silicon. This thickness dependant morphology is of crucial importance for solar cell design. We attain protocrystalline absorber which reflect in a strongly improved fill factor compared to amorphous silicon based solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Koh, J., Lee, Y., Fujiwara, H., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett. 73, 1526 (1998).Google Scholar
2 Guha, S., Yang, J., Williamson, D. L., Lubianiker, Y., Cohen, J. D., and Mahan, A. H., Appl. Phys. Lett. 74, 1860 (1999).Google Scholar
3 Kamei, T., Stradins, P., and Matsuda, A., Appl. Phys. Lett. 74, 1707 (1999).Google Scholar
4 Tsu, D. V., Chao, B. S., and Ovshinsky, S. R., Appl. Phys. Lett. 71, 1317 (1997).Google Scholar
5 Finger, F., Kroll, U., Viret, V., , Shah, Beyer, W., Tang, X.-M., Weber, J., Howling, A., and Hollenstein, Ch., J. Appl. Phys. 71, 5665 (1992).Google Scholar
6 Alpuim, P., Chu, V., and Conde, J. P., J. Appl. Phys. 86, 3812 (1999).Google Scholar
7 Koch, C., Ito, M., Schubert, M. B., and Werner, J. H., 16th PVSEC, Glasgow, unpublished.Google Scholar
8 Okamoto, S., Hishikawa, Y., and Tsuda, S., Jpn. J. Appl. Phys. 36, 4251 (1997).Google Scholar