Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:40:14.620Z Has data issue: false hasContentIssue false

Protic ionic liquid-based thermoelectrochemical cells for the harvesting of waste heat.

Published online by Cambridge University Press:  24 May 2013

Theodore J. Abraham
Affiliation:
ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
Douglas R. MacFarlane
Affiliation:
ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
Ray H. Baughman
Affiliation:
University of Texas Dallas, 800 W Campbell Road, Richardson, TX, 75080, U.S.A.
Na Li
Affiliation:
University of Texas Dallas, 800 W Campbell Road, Richardson, TX, 75080, U.S.A. Institute of Polymer Chemistry, Nankai University, Tianjin, 300071, China
Yongshen Chen
Affiliation:
Institute of Polymer Chemistry, Nankai University, Tianjin, 300071, China
Jennifer M. Pringle
Affiliation:
Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia.
Get access

Abstract

The ability to efficiently harvest heat as a source of sustainable energy would make a significant contribution to reducing our current reliance on fossil fuels. Waste heat sources, such as those produced in industrial processes or through geothermal activity, are extensive, often continuous, and at present severely underutilised. Thermoelectrochemical cells offer an alternative design to the traditional semiconductor-based thermoelectric devices and offer thepromise of continuous and cheap operation at moderate temperatures, low maintenance and with no carbon emissions. They utilise two electrodes, held at different temperatures, separated by an electrolyte containing a redox couple. It is the temperature dependence of the electrochemical redox potential that generates the potential difference across the device as a result of the appliedtemperature difference. The magnitude of this redox potential temperature dependence is given by the Seebeck coefficient, Se. Until recently, research into thermoelectrochemical cells had primarily focused on aqueous media, predominantly with the Fe(CN)63-/4- redox couple.[1] However, the good thermal and electrochemical stability, non-volatility and non-flammability ofmany ionic liquids make them promising alternative electrolytes for these devices. The use of ionic liquid (IL) electrolytes offers potential advantages that include increased thermoelectrochemical device efficiencies and lifetimes and the ability to utilise low temperature (often “waste”) heat sources in the 100 – 200 °C temperature range.[2] Here we discuss our research into the use of the Fe(CN)63-/4- redox couple in protic IL electrolytes, with different amounts of added water, in a thermoelectrochemical device with platinum and single walled carbon nanotube (SWNT) electrodes.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hu, R., Cola, B. A., Haram, N., Barisci, J., Lee, S., Stoughton, S., Wallace, G., Too, C., Thomas, M., Gestos, A., dela Cruz, M. E., Ferraris, J. P., Zakhidov, A. A. and Baughman, R. H., Nano Letters 10(3), 838846 (2010).CrossRefGoogle Scholar
Abraham, T. J., MacFarlane, D. R. and Pringle, J. M., Chemical Communications 47(22), 62606262 (2011).CrossRefGoogle Scholar
Schiermeier, Q., Tollefson, J., Scully, T., Witze, A. and Morton, O., Nature 454 (7206), 816823 (2008).CrossRefGoogle Scholar
Telkes, M., Journal of Applied Physics 18, 11161127 (1947).CrossRefGoogle Scholar
Quickenden, T. I. and Vernon, C. F., Solar Energy 36(1), 6372 (1986).CrossRefGoogle Scholar
Biswas, K., He, J., Blum, I. D., Wu, C.-I., Hogan, T. P., Seidman, D. N., Dravid, V. P. and Kanatzidis, M. G., Nature 489 (7416), 414418 (2012).CrossRefGoogle Scholar
Chum, H. L., Osteryoung, R. A., Review of thermally regenerative electrochemical systems, (1981).Google Scholar
Quickenden, T. I. and Mua, Y., Journal of the Electrochemical Society 142(11), 39853994 (1995).CrossRefGoogle Scholar
Kuzminskii, Y. V., Zasukha, V. A. and Kuzminskaya, G. Y., Journal of Power Sources 52(2), 231242 (1994).CrossRefGoogle Scholar
Migita, T., Tachikawa, K., Katayama, Y., Miura, T., Electrochemistry 77(8), 639641 (2009).CrossRefGoogle Scholar
Agar, J. N., Breck, W.G., Transactions of the Faraday Society. 53(167) (1957).CrossRefGoogle Scholar
Yee, E. L., Cave, R. J., Guyer, K. L., Tyma, P. D. and Weaver, M. J., Journal of the American Chemical Society 101(5), 11311137 (1979).CrossRefGoogle Scholar
Sahami, S. and Weaver, M. J., Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 122, 171181 (1981).CrossRefGoogle Scholar
Wilkes, J. S., Zaworotko, M. J., Chemical Communications, 965 (1992).Google Scholar
Wasserscheid, P., Welton, T., Ionic Liquids in Synthesis. (Wiley-VCH Verlag, Weinheim), (1998).Google Scholar
Xu, W. and Angell, C. A., Science 302 (5644), 422425 (2003).CrossRefGoogle Scholar
Ohno, K., Electrochemical Aspects of Ionic Liquids, (John Wiley & Sons, Inc. Hoboken, N.J.) (2005).CrossRefGoogle Scholar
Seddon, K. R., Earle, M. J., Pure Applied Chemistry 72(7), 13911398 (2000).CrossRefGoogle Scholar
Zhao, C., Burrell, G., Torriero, A. A. J., Separovic, F., Dunlop, N. F., MacFarlane, D. R. and Bond, A. M., Journal of Physical Chemistry B 112(23), 69236936 (2008).CrossRefGoogle Scholar
Fujita, K., Forsyth, M., MacFarlane, D. R., Reid, R. W. and Elliott, G. D., Biotechnology and Bioengineering 94(6), 12091213 (2006).CrossRefGoogle Scholar
Laali, K. K. and Gettwert, V. J., Journal of Organic Chemistry 66(1), 3540 (2001).CrossRefGoogle Scholar
Picquet, M., Tkatchenko, I., Tommasi, I., Wasserscheid, P. and Zimmermann, J., Advanced Synthesis & Catalysis 345(8), 959962 (2003).CrossRefGoogle Scholar
Bonhote, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K. and Graetzel, M., Inorganic Chemistry 35(5), 11681178 (1996).CrossRefGoogle Scholar
Flarsheim, W. M., Tsou, Y. M., Trachtenberg, I., Johnson, K. P. and Bard, A. J., Journal of Physical Chemistry 90, 38573862 (1986).CrossRefGoogle Scholar