Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:31:33.606Z Has data issue: false hasContentIssue false

Prospects for High Thermoelectric Figures of Merit in 2D Systems

Published online by Cambridge University Press:  15 February 2011

M. S. Dresselhaus
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
X. Sun
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
S. B. Cronin
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
T. Koga
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
G. Dresselhaus
Affiliation:
Francis Bitter Magnet Lab., Massachusetts Institute of Technology, Cambridge, MA 02139
K. L. Wang
Affiliation:
Department of Electrical Engineering, University of California, Los Angeles, CA 90024
Get access

Abstract

Enhanced ZT has been predicted theoretically and observed experimentally in 2D quantum wells, with good agreement between theory and experiment. Advantages of low dimensional systems for thermoelectric applications are described and prospects for further enhancement of ZT are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Goldsmid, H. J., Electronic Refrigeration (Pion, London, 1986).Google Scholar
[2] Mahan, G. D., in Physics Today March (1997).Google Scholar
[3] Mahan, G. D., in Solid State Physics, edited by Ehrenreich, H. and Spaepen, F. (Academic Press, 1996).Google Scholar
[4] Mahan, G. D., Proc. Natl. Acad. Sci. USA 93, 74367439 (1996).Google Scholar
[5] Slack, G. A. and Tsoukala, V. G., J. Appl. Phys. 76, 1665 (1994).Google Scholar
[6] Slack, G. A., in CRC Handbook of Thermoetectrics, edited by Rowe, D. M., CRC Press, New York, 1995, page 407.Google Scholar
[7] Fleurial, J.-P., in Proceedings of the 15th IEEE International Conference on Thermoelectrics, edited by Fleurial, J.-P., Pasadena, CA, 1996 (IEEE Catalogue Number 96TH8169).Google Scholar
[8] Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 1272712731 (1993).Google Scholar
[9] Hicks, L. D. and Dresselhaus, M. S., in Semiconductor Heterostructures for Photonic and Electronic Applications: MRS Symposia Proceedings, Boston, volume 281, edited by Tu, C. W., Houghton, D. C., and Tung, R. T., page 821, Materials Research Society Press, Pittsburgh, PA, 1993.Google Scholar
[10] Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 16631 (1993).Google Scholar
[11] Sofo, J. O. and Mahan, G. D., Appl. Phys. Lett. 65, 2690 (1994).Google Scholar
[12] Broido, D. L. and Reinecke, T. L., Phys. Rev. B 51, 13797 (1995).Google Scholar
[13] Broido, D. L. and Reinecke, T. L., Appl. Phys. Lett. 67, 1170 (1995).Google Scholar
[14] Hicks, Lyndon D., The effect of quantum-well superlattices on the thermo-electric figure of merit, PhD thesis, Department of Physics, Massachusetts Institute of Technology, June 1996.Google Scholar
[15] Hicks, L. D., Harman, T. C., and Dresselhaus, M. S., Appl. Phys. Lett. 63, 3230 (1993).Google Scholar
[16] Hicks, L. D., Harman, T. C., Sun, X., and Dresselhaus, M. S., Phys. Rev. B 53, R10493–R10496 (1996).Google Scholar
[17] Yuan, Shu, Krenn, H., Springholz, G., and Bauer, G., Phys. Rev. B 47, 7213 (1993).Google Scholar
[18] Springholz, G., Ihninger, G., Bauer, G., Oliver, M. M., Pastalan, J. Z., Romaine, S., and Goldberg, B. B., Appl. Phys. Lett. 63, 2908 (1993).Google Scholar
[19] Springholz, G. and Bauer, G., Appl. Phys. Lett. 62, 2399 (1993).Google Scholar
[20] Harman, T. C., Spears, D. L., and Manfra, M. J., J. Electron. Mater. 25, 1121 (1996).Google Scholar
[21] Sun, X., Dresselhaus, M. S., Wang, K. L., and Tanner, M. O., in Thermoelectric Materials – New Directions and Approaches: MRS Symposia Proceedings, San Francisco, volume 478, edited by Tritt, T. M., Mahan, G., Lyons, H. B. Jr.,, and Kanatzidis, M. G., Materials Research Society Press, Pittsburgh, PA, 1997.Google Scholar
[22] Dornhaus, R., Nimtz, G., and Schlicht, B., Narrow-Gap Semiconductors (Springer-Verlag, Berlin, 1985). Springer Tracts in Modern Physics, Volume 98.Google Scholar
[23] Isaacson, R. T. and Williams, G. A., Phys. Rev. 185, 682 (1969).Google Scholar
[24] Dresselhaus, M. S., in Proceedings of the Conference on the Physics of Semimetals and Narrow Gap Semiconductors, edited by Carter, D. L. and Bate, R. T., page 3, Pergamon Press, New York, NY, 1970.Google Scholar
[25] Yim, W. M. and Amith, A., Solid State Electronics 15, 11411165 (1972).Google Scholar
[26] Btandt, N. B., Chudinov, S. M., and Karavaev, V. G., Soy. Phys. JETP 34, 368 (1972).Google Scholar
[27] Lannin, J. S., Phys. Rev. B 19, 2390 (1979).Google Scholar