Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-23T08:43:27.288Z Has data issue: false hasContentIssue false

Properties of Si/Cs/O nanocluster thin films with negative electron affinity

Published online by Cambridge University Press:  10 February 2011

L. N. Dinh
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
W. McLean II
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
M. A. Schildbach
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
M. Balooch
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
Get access

Abstract

Thin films of Si/Cs/O nanoclusters have been synthesized by the technique of supersaturated thermal vaporization of Si and Cs in an oxygen background gas. These films, which were deposited onto conducting or semiconducting substrates, exhibit negative electron affinity (NEA) as evidenced by ultraviolet photoemission spectroscopy (UPS). Photo and field electron emission properties of these nanocluster films were investigated with photo-electron emission microscopy (PEEM), field electron emission microscopy (FEEM), and current-voltage measurements. Flat cathodes covered with thin films of Si/Cs/O nanoclusters exhibited high current outputs and low turn-on fields. The films' NEA is unaffected by air exposure and is stable to high temperature annealing (550 TC). A field emission display unit with a simple diode structure containing a flat cathode coated with a patterned thin film of Si/Cs/O nanoclusters has also been built to demonstrate the potential application of this material in cold cathode electron emitting devices, particularly field emission flat panel displays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Uebbing, J. J. and James, L. W., J. Appl. Phys. 41, 4505 (1970).Google Scholar
2. Kuttel, O. M., Groning, O., Schaller, E., Dietrich, L. Groning, P., Schlapbach, L., Diamond and Related Materials 5, 807 (1996).Google Scholar
3. Bozeman, S. P., Baumann, P. K., Ward, B. L., Powers, M. J., Cuomo, J. J., Nemanich, R. J., Dreifus, D. L., Diamond and Related Materials 5, 802 (1996).Google Scholar
4. Powers, M. J., Benjamin, M. C., Porter, L. M., Nemanich, R. J., Davis, R. F., Cuomo, J. J., Doll, G. L., Harris, Stephen J., Appl. Phys. Lett. 67, 3912 (1995).Google Scholar
5. Nemanich, R. J., Bauman, P. K., Benjamin, M. C., King, S. W., Weide, J. Van der, Davis, R. F., Diamond and Related Materials 5, 790 (1996).Google Scholar
6. Benjamin, M. C., Wang, Cheng, Davis, R. F., and Nemanich, R. J., Appl. Phys. Lett. 64, 3288 (1994).Google Scholar
7. Bell, R. L., Negative electron affinity devices (Clarendon Press, Oxford, 1973).Google Scholar
8. Krainsky, I. L., Asnin, V. M., Dayton, J. A., Appl. Surf. Sci. 111, 265 (1997).Google Scholar
9. Wang, L. M., Cheng, Z., Ping, Q., Hou, X., Appl. Phys. Lett. 67, 91 (1995).Google Scholar
10. Pickett, W. E., Phys. Rev. Lett. 73, 1664 (1994).Google Scholar
11. Vanderweide, J., Nemanich, R. J., J. Vac. Sci. Technol. B 12, 2475 (1994).Google Scholar
12. Sakai, J., Mizutani, G., Ushioda, S., Surf. Sci. 283, 217 (1993).Google Scholar
13. Guo, T. L., J. Appl. Phys. 72, 4384 (1992).Google Scholar
14. Ciccacci, F., Chiala, G., J. Vac. Sci. Technol. A 9, 2991 (1991).Google Scholar
15. Abukawa, T., Enta, Y., Kashiwakura, T., Suzuki, S., Kono, S., Sakamoto, T., J. Vac. Sci. Technol. A 8, 3205 (1990).Google Scholar
16. Bandis, C., Pate, B. B., Surf Sci. 350, 315 (1996).Google Scholar
17. Guo, T. L., Gao, H. R., Appl. Phys. Lett. 58, 1757 (1991).Google Scholar
18. Alperovich, V. L., Paulish, A. G., Scheibler, H. E., Terekhov, A. S., Appl. Phys. Lett. 66, 2122 (1995).Google Scholar
19. Dinh, L. N., McLean, W. II, Schilbach, M. A., Balooch, M., to appear in Phys. Rev. BGoogle Scholar
20. Due to convolution of the clusters' dimensions with the finite radius of the AFM tip, AFM diameter measurements tended to give values that are much higher than actual values. So diameter measurement is avoided here.Google Scholar
21. Ertl, G., Kuppers, J., Low Energy Electrons and Surface Chemistry (VCH, Deerfield Beach, Florida, 1985).Google Scholar
22. Dinh, L. N., Chase, L. L., Balooch, M., Siekhaus, W. J., Wooten, F., Phys. Rev. B54, 5029 (1996)Google Scholar
23. Gomer, R., Field Emission and Field Ionization (Harvard University Press, Cambridge, Massachusetts, 1961).Google Scholar
24. Kanemitsu, Y., Ogawa, T., Shiraishi, K., and Takeda, K., Phys. Rev. B 48, 4883 (1993).Google Scholar
25. Tsybeskov, L., Vandyshev, J. V., and Fauchet, P. M., Phys. Rev. B 49, 7821 (1994).Google Scholar
26. Yamada, M., Takazawa, A., and Tamura, T., Jpn. J. Appl. Phys. 31, L1451 (1992).Google Scholar
27. Koch, F., Petrova-Koch, V., and Muschik, T., J. Lumin. 57, 271 (1993).Google Scholar
28. Somorjai, G. A., Principles of Surface Chemistry, (Prentice Hall, Englewood Cliffs, New York, 1972).Google Scholar
29. Kittel, C., Introduction to Solid State Physics (5th edition), (John Wiley & Sons, Inc., New York, 1976).Google Scholar
30. Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures, (Academic Press, Inc., 1991).Google Scholar
31. Meyers, G. P., Aslam, M., Klimecky, P., Cathey, L. W., elder, R. E., Artz, B. E., J. Vac. Sci. Technol. B 11, 642 (1993).Google Scholar
32. Temple, D., Ball, C. A., Palmer, W. D., Yadon, L. N., Vellenga, D., Mancusi, J., Gray, H. F., J. Vac. Sci. Technol. B 13, 150 (1995).Google Scholar
33. Hirano, T., Kanemaru, S., Itoh, J., J. Vac. Sci. Technol. B 14, 3357 (1996).Google Scholar
34. Macaulay, J. M., Brodie, I., spindt, C. A., Holland, C. E., Appl. Phys. Lett. 61, 997 (1992).Google Scholar
35. Chuang, F. Y., Sun, C. Y., Cheng, H. F., Huang, C. M., and others, Appl. Phys. Lett 68, 1666 (1996).Google Scholar
36. ding, M. Q., meyers, A. F., Choi, W. B., Vispute, R. D., and others, J. Va. Sci. Technol. B 15, 840 (1997).Google Scholar
37. Xie, T. B., Mackie, W. A., Davis, P. R., J. Vac. Sci. Technol. B 14, 2090 (1996).Google Scholar
38. Fursey, G., Appl. Surf. Sci. 94/95,44 (1996).Google Scholar
39. Jensen, K. L., Ganguly, A. K., J. Appl. Phys. 73, 4409 (1993).Google Scholar
40. Stratton, R., Phys. Rev. 1, 67 (1962).Google Scholar
41. Schlesser, R., Mclure, M. T., McCarson, B. L., and Sitar, Z., J. Appl. Phys. 82, 5763 (1997).Google Scholar
42. Zhirnov, V. V., Wojak, G. J., Choi, W. B., Cuomo, J. J., and Hren, J. J., J. Vac. Sci. Technol. A 15, 1733 (1997).Google Scholar