Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T18:01:27.649Z Has data issue: false hasContentIssue false

Properties of Plutonium-Containing Colloids Released from Glass-Bonded Sodalite Nuclear Waste form

Published online by Cambridge University Press:  21 March 2011

Lester R. Morss
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
Carol J. Mertz
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
A. Jeremy Kropf
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
Jennifer L. Holly
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

In glass-bonded sodalite, which is the ceramic waste form (CWF) to immobilize radioactive electrorefiner salt from spent metallic reactor fuel, uranium and plutonium are found as 20-50 nm (U,Pu)O2 particles encapsulated in glass near glass-sodalite phase boundaries. In order to determine whether the (U,Pu)O2 affects the durability of the CWF, and to determine release behavior of uranium and plutonium during CWF corrosion, tests were conducted to measure the release of matrix and radioactive elements from crushed CWF samples into water and the properties of released plutonium. Released colloids have been characterized by sequential filtration of test solutions followed by elemental analysis, dynamic light scattering, transmission electron microscopy (TEM), and X-ray absorption spectroscopy. This paper reports the composition, size, and agglomeration of these colloids. Significant amounts of colloidal, amorphous aluminosilicates and smaller amounts of colloidal crystalline (U,Pu)O2 were identified in test solutions. The normalized releases of uranium and plutonium were significantly less than the normalized releases of matrix elements, i.e., the CWF retains these radionuclides well.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ebert, W. L., Esh, D. W., Frank, S. M., Goff, K. M., Hash, M. C., Johnson, S. G., Lewis, M. A., Morss, L. R., Moschetti, T. L., O'Holleran, T. P., Richmann, M. K., Riley, W. P., Simpson, L. J., Sinkler, W., Stanley, M. L., Tatko, C. D., Wronkiewicz, D. J., Ackerman, J. P., Bateman, K., Battisti, T. J., Cummings, D. G., DiSanto, T., Gougar, M., Hirsche, K., Leibowitz, L., Luo, J. S., Noy, M., Retzer, H., Simpson, M. F., Warren, A. R., and Zyryanov, V. N., Ceramic Waste form Handbook, Argonne National Laboratory Report ANL-NT-119.Google Scholar
2. Sinkler, W., O'Holleran, T. P., Frank, S. M., Richmann, M. K., and Johnson, S. G., in Scientific Basis of Nuclear Waste Management XXIII, edited by Smith, R.W. and D.Shoesmith, W., (Mater. Res. Soc. Proc. 608, Pittsburgh, PA, 2000) pp. 423429.Google Scholar
3.Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Wastes: The Product Consistency Test (PCT),” ASTM C 1285-97 12.01, West Conshohocken, PA, pp. 694711 (1999).Google Scholar
4. Morss, L. R. and Ebert, W. L., Proceedings, Am. Ceram. Soc. Symp., Environmental issues and waste management technologies in the ceramic and nuclear industries VI, 2001 (in press).Google Scholar
5. Provencher, S. W., Comput. Phys. Commun. 27, 213227 (1984).Google Scholar
6. Provencher, S. W., Comput. Phys. Commun. 27, 229242 (1984).Google Scholar
7. Stock, R. S. and Ray, W. H., J. Polymer Sci.: Polym. Phys. Ed., 23, 1393 (1985).Google Scholar
8. Richmann, M. K., Reed, D. T., Kropf, A. J., Aase, S. B., and Lewis, M. A., J. Nucl. Mater. 297, 303312 (2001).Google Scholar
9. Fanning, T. H., Morris, E. E., Wigeland, R. A., Ebert, W. L., Lewis, M. A., and Morss, L. R., in Proc. 9th Internat. High-Level Radioactive Waste Management Conf. (IHLRWM), Las Vegas, NV, April 29 – May 3, 2001, American Nuclear Society, La Grange Park, IL (2001).Google Scholar