Article contents
Properties Of Inp Simultaneously Doped With Zinc And Sulfur Grown By Mocvd
Published online by Cambridge University Press: 15 February 2011
Abstract
As the p-type dopant most often used in metalorganic chemical vapor deposition (MOCVD) of Group III - Group V compound semiconductors, Zn presents problems in device design and performance because of its high diffusivity in these materials. While Zn diffusion into n-type layers such as InP:S has been observed frequently, there is little known as to the electronic and optical properties of the resultant material. We have grown InP samples by MOCVD which are doped with both Zn and S to levels as high as 3×1018 cm−3. These samples were analyzed by electrochemical C-V profiling, van der Pauw-Hall analysis, secondary ion mass spectroscopy (SIMS), and low temperature (10K) photoluminescence spectroscopy (PL). We have determined that good hole mobility is maintained in InP:Zn samples that are simultaneously doped with S up to a level of 4×1017 cm−3. PL analysis of co-doped samples shows peaks between 0.91 and 0.92 μm which are indicative of donor-acceptor transitions, and broad peaks with energy levels of approximately 1.0 μm which may be indicative of ZnS complexes or precipitates. SIMS analysis of Zn diffusion into Fe doped substrates shows that Zn diffusion is reduced in the presence of S in the lattice.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
- 1
- Cited by