Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T04:38:01.708Z Has data issue: false hasContentIssue false

Properties of InN layers grown by High Pressure CVD

Published online by Cambridge University Press:  01 February 2011

Mustafa Alevli
Affiliation:
Georgia State University, Physics & Astronomy, 29 Peachtree Center Avenue, Atlanta, GA, 30303, United States, 404-463 9617, 404-651 1427
Goksel Durkaya
Affiliation:
[email protected], Georgia State University, Department of Physics & Astronomy, Atlanta, GA, 30303, United States
Ronny Kirste
Affiliation:
[email protected], Georgia State University, Department of Physics & Astronomy, Atlanta, GA, 30303, United States
Aruna Weesekara
Affiliation:
[email protected], Georgia State University, Department of Physics & Astronomy, Atlanta, GA, 30303, United States
Unil Perera
Affiliation:
[email protected], Georgia State University, Department of Physics & Astronomy, Atlanta, GA, 30303, United States
William Fenwick
Affiliation:
[email protected], Georgia Institute of Technology, School of ECE, Atlanta, GA, 30332, United States
Vincent Woods
Affiliation:
[email protected], Georgia Institute of Technology, School of ECE, Atlanta, GA, 30332, United States
Ian T. Ferguson
Affiliation:
[email protected], Georgia Institute of Technology, School of ECE, Atlanta, GA, 30332, United States
Axel Hoffmann
Affiliation:
[email protected], Technical University Berlin, Department of Physics, Berlin, D-10623, Germany
Nikolaus Dietz
Affiliation:
[email protected], Georgia State University, Department of Physics & Astronomy, Atlanta, GA, 30303, United States
Get access

Abstract

Indium nitride (InN) and indium-rich group III-nitride alloys are promising materials for advanced optoelectronic device applications. Indium-rich alloys, e.g. (Ga1-y-xAlyInx)N will enable the fabrication of high-efficient light emitting diodes tunable in the whole visible spectral region, as well as advanced high speed optoelectronics for optical communication operating. The present limitation in this area is the growth of high quality InN and indium-rich group III-nitride alloys as documented in many controversial reports on the true physical properties of InN. The difficulties arise from the low dissociation temperature of InN that requires an extraordinarily high nitrogen overpressure to stabilize the material up to optimum growth temperatures. We developed a novel “high-pressure chemical vapor deposition” (HPCVD) system, capable to control and analyze the vast different partial pressures of the constituents. Our results show that the chosen HPCVD pathway leads to high-quality single crystalline InN, demonstrating that HPCVD is a viable tool for the growth of indium rich group III nitride alloys. The structural analysis of InN deposited on GaN-sapphire substrate by XRD show single phase InN(0002) peaks with full width half maximum (FWHM) around 400 arcsec. Infrared reflectance spectroscopy is used to analyze the plasmon frequencies, high frequency dielectric constants, the free carrier concentrations and carrier mobilities in these layers. For nominal undoped InN layers, free carrier concentrations in the mid 1019 cm−3 and mobilities around 600 cm−2-V-1-s-1 are observed. Further improvements are expected as the growth parameters are optimized. The explored growth parameters are close to of those employed for GaN growth conditions, which is a major step towards the fabrication of indium rich (Ga1−y−xAlyInx)N alloys and heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Scott, K., Butcher, A., Wintrebert-Fouquet, M., Chen, P. P.-T., Prince, K. E., Timmers, H., Shrestha, S. K., Shubina, T. V., Ivanov, S. V., Wuhrer, R., Phillips, M. R., and Monemar, B., Phys. Stat. Sol. (c) 2, pp. 22632266 (2005).Google Scholar
[2] Alexandrov, Dimiter, Scott, K. Butcher, A. and Tansley, Trevor L., J. Cryst. Growth 288 pp. 261267 (2006).Google Scholar
[3] Dietz, N., McCall, S., Bachmann, K.J., Proc. Microgravity Conf. 2000, NASA/CP-2001- 210827, pp. 176–181 (2001).Google Scholar
[4] Dietz, N., Woods, V., McCall, S. and Bachmann, K.J., Proc. Microgravity Conf. 2002, NASA/CP-2003-212339, pp. 169–181 (2003).Google Scholar
[5] Woods, V. and Dietz, N., Mater. Sci. & Eng. B 127 (2-3) pp 239250 (2006).Google Scholar
[6] Dietz, N., book chapter 6 in “III-Nitrides Semiconductor Materials”, ed. Z.C., Feng, Imperial College Press, ISBN 1-86094-636-4, pp. 203235 (2006).Google Scholar
[7] Woods, V., Born, H., Strassburg, M. and Dietz, N., J. Vac. Sci. Technol. A 22 (4), pp. 15961599 (2004).Google Scholar
[8] Dietz, N., Alevli, M., Woods, V., Strassburg, M., Kang, H., and Ferguson, I. T., Phys. stat. sol. (b) 242(15) pp. 29852994 (2005).Google Scholar
[9] Alevli, M., Durkaya, G., Fenwick, W., Weerasekara, A., Woods, V., Ferguson, I., Perera, A.G.U. and Dietz, N., Appl. Phys. Lett. 89, pp. 112119 (2006).Google Scholar
[10] Cardelino, B. H., Moore, C. E., Cardelino, C. A., and Dietz, N., Proc. SPIE Vol.591 2, ISBN 0-8194-5917-8, pp. 8699 (2005).Google Scholar
[11] Dietz, N., Alevli, M., Kang, H., Straßburg, M., Woods, V., Ferguson, I. T., Moore, C. E. and Cardelino, B. H., Proc. SPIE Vol.591 2, ISBN 0-8194-5917-8, pp. 78–85 (2005).Google Scholar
[12] Tansley, T.L. and Foley, C.P., J. Appl. Phys. 59(9) pp. 3241–4 (1986).Google Scholar
[13] Demangeot, F., Pinquier, C., Frandon, J., Gaio, M., Briot, O., Maleyre, B., Ruffenach, S., and Gil, B., Phys. Rev. B 71, pp.104305–11 (2005).Google Scholar
[14] Fano, U., Phys. Rev. 124(6) pp.18661878 (1961).Google Scholar
[15] Inushima, T., Higashiwaki, M., and Matsui, T., Phys. Rev. B 68, 235204 (2003).Google Scholar
[16] Pines, David, “Elementary Excitations In Solids,” Perseus Books, ISBN: 0805379134 (1963)Google Scholar
[17] Alevli, M., Durkaya, G., Woods, V., Habeck, U., Kang, H., Senawiratne, J., Strassburg, M., Ferguson, I. T., Hoffmann, A., and Dietz, N., Mat. Res. Soc. Symp. Proc. 892, ISBN: 1- 55899-846-2, FF6.2, pp.16 (2006).Google Scholar
[18] Kawashima, T., Yoshikawa, H., Adachi, S., Fuke, S., and Ohtsuka, K., J. Appl. Phys. 82(7) pp.35283535 (1997).Google Scholar