Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T13:18:08.493Z Has data issue: false hasContentIssue false

Properties of InGaN/GaN Quantum Wells Grown by Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  21 March 2011

M. G. Cheong
Affiliation:
Semiconductor Physics Research Center (SPRC)Chonbuk National University, Chonju 561-756, KOREA
K. S. Kim
Affiliation:
Semiconductor Physics Research Center (SPRC)Chonbuk National University, Chonju 561-756, KOREA
C. S. Kim
Affiliation:
Semiconductor Physics Research Center (SPRC)Chonbuk National University, Chonju 561-756, KOREA
R. J. Choi
Affiliation:
Semiconductor Physics Research Center (SPRC)Chonbuk National University, Chonju 561-756, KOREA
H. S. Yoon
Affiliation:
Semiconductor Physics Research Center (SPRC)Chonbuk National University, Chonju 561-756, KOREA
S. W. Yu
Affiliation:
Semiconductor Physics Research Center (SPRC)Chonbuk National University, Chonju 561-756, KOREA
Y. K. Hong
Affiliation:
Semiconductor Physics Research Center (SPRC)Chonbuk National University, Chonju 561-756, KOREA
C.-H. Hong
Affiliation:
Semiconductor Physics Research Center (SPRC)Chonbuk National University, Chonju 561-756, KOREA
E.-K. Suh
Affiliation:
Semiconductor Physics Research Center (SPRC)Chonbuk National University, Chonju 561-756, KOREA
H. J. Lee
Affiliation:
Semiconductor Physics Research Center (SPRC)Chonbuk National University, Chonju 561-756, KOREA
Get access

Abstract

Optical and structural properties of InGaN/GaN quantum wells having growth interruption were investigated using high-resolution x-ray diffraction, photoluminescence and transmission microscopy. InxGa1−xN/GaN (x>0.25) six pair quantum wells used in this study were grown on c- plane sapphire by metalorganic chemical vapor deposition. The growth interruption was carried out by closing the group-III metal organic sources before and after growth of InGaN quantum well layers. With increasing the interruption time, the quantum dot-like region and well thickness decreases due to indium re-evaporation or thermal etching effect. As a result, PL peak position is blue-shifted and intensity is reduced. The size and number of V-defect did not vary with interruption time. The interruption time is not directly related with formation of the defect. The V-defect in quantum wells originates at threading dislocations and inversion domain boundaries due to higher misfit strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwasa, N., and Nagaham, S., Jpn. J. Appl. Phys. Lett. Part1 34, 797 (1995)Google Scholar
2. Ponce, F. A. and Bour, D. P., Nature (London). 386, 351 (1997)Google Scholar
3. Uchida, K., , M.Kawata, Yang, T., , A.Miwa, and Gotoh, J., Jpn. J. Appl. Phys. 37, L571 (1998)Google Scholar
4. Cheong, M. G., Kim, C. S., Choi, R. J., Yoon, H. S., Hong, C.-H., Suh, E. K., and Lee, H. J., J. Korean Phys. Soc. Will be publsihedGoogle Scholar
5. Narukawa, Y., , Y.Kawakami, Funato, M., , S.Fujita, and Nakamura, S., Appl. Phys. Lett. 70 981 (1997)Google Scholar
6. McCluskey, M. D., Romano, L. T., Krusor, B. S., Bour, D. P., Appl. Phys. Lett. 72, 1730 (1998)Google Scholar
8. Mahanty, S., , M.Hao, Sugahara, T., Fareed, R. S. Q., , Y.Morishima, Naoi, Y., , T.Wang, and Sakai, S. Materials Letters 41, 67 ( 1999)Google Scholar
9. Sun, C. J., Anwar, M. Zubair, Chen, Q., Yang, J. W., Khan, M. Asif, Shur, M. S., Byhhovski, A. D., Liliental-Weber, Z., , C.Kisielowski, Smith, M., Lin, J. Y., and Xiang, H. X. Appl. Phys.Lett, 70, 2978 (1997)Google Scholar
10. Cho, H. K., Lee, J. Y., Kim, K. S., and Yang, G. M., Appl. Phys. Lett. 247, 77 ( 2000)Google Scholar
11. Hiramatsu, K., , Y.Kawaguchi, Shimizu, M., , N.Sawaki, Zheleva, T., Davis, R. F., , H.Tsuda, Taki, W., Kuwano, N., and Oki, K.. Internet Journal of Nitride Semiconductor Research 2, 6 (1997)Google Scholar
12. Kim, I. H., Park, H. S., Park, Y. I., and Kim, T., Appl. Phys. Lett. 73, 1634 (1998)Google Scholar
13. Hirthe, J. P., , J.Lothe, Theory of Dislocations, (Wiley and Sons, 1982), Chap. 3.Google Scholar
14. Chichibu, S., Azuhata, T., Sato, T. and Nakamura, S., Jpn. J. Appl. Phys. 70, 2822 (1997)Google Scholar
15. Domen, K., Kuramata, A. and Tanashashi, T., Appl. Phys. Lett. 72, 1539 (1998)Google Scholar
16. Nakamura, S., , M.Senoh, nagahama, S., , N.Iwasa, Yamada, T., , T.Matsushita, Sugaimoto, Y., and Kikyokau, H., Appl. Phys. Lett. 70, 2753 (1997)Google Scholar
17. Cho, Y. H., Gainer, G. H., Fischer, A. J., Song, J. J., , S.Keller, Mishra, U. K., and DenBaars, S. P.. Appl. Phys. Lett. 73, 1370 ( 1998).Google Scholar