Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-16T17:02:14.768Z Has data issue: false hasContentIssue false

Properties of Carbon-doped TiO2 (Anatase) Photo-Electrodes

Published online by Cambridge University Press:  01 February 2011

Cristina S. Enache
Affiliation:
[email protected], Delft University of Technology, Julianalaan 136, Delft, ZH, 2628BL, Netherlands, +31-152782676, +31-152788047
Joop Schoonman
Affiliation:
[email protected], Delft University of Technology, Delft Institute for Sustainable Energy, Netherlands
Roel van de Krol
Affiliation:
[email protected], Delft University of Technology, Delft Institute for Sustainable Energy, Netherlands
Get access

Abstract

To enhance the visible light absorption of anatase TiO2 photo-electrodes, the material was doped with carbon by two different methods: i) by spray pyrolysis under a CO2 atmosphere, and ii) by a post-deposition thermal treatment in a hexane-containing environment. For the hexane-treated samples, most of the carbon is located at the surface, from which it can be removed by re-oxidation at elevated temperatures. In addition, both methods seem to result in the presence of small amounts of carbon in the bulk of the material, as deduced from a small red-shift of the absorption edge of TiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fujishima, A. and Honda, K., Nature 238, 37 (1972).Google Scholar
[2] Wang, C.Y., Bottcher, C., Bahnemann, D.W., and Dohrmann, J.K., J. Mater. Chem. 13, 2322 (2003).Google Scholar
[3] Bally, A.R., Korobeinikova, E.N., Schimd, P.E., Lévy, F., and Bussy, F., J. Phys. D: Appl. Phys. 31, 1149 (1998).Google Scholar
[4] Ghosh, A.K. and Maruska, H.P., J. Electrochem. Soc. 124, 1516 (1977).Google Scholar
[5] Choi, W., Termin, A., and Hoffmann, M.R., J. Phys. Chem. 98, 13669 (1994).Google Scholar
[6] Lindgren, T., Mwabora, J.M., Avendano, E., Jonsson, J., Hoel, A., Granqvist, C.G., and Lindquist, S.E., J. Phys. Chem. B 107, 5709 (2003).Google Scholar
[7] Sakthivel, S., Janczarek, M., and Kisch, H., J. Phys. Chem. B 108, 19384 (2004).Google Scholar
[8] Prokes, S.M., Gole, J.L., Chen, X., Burda, C., and Carlos, W.E., Adv. Funct. Mater. 15, 161 (2005).Google Scholar
[9] Khan, S.U.M., Al Shahry, M., and Ingler, W.B. Jr, Science 297, 2243 (2002).Google Scholar
[10] Sakthivel, S. and Kisch, H., Angew. Chem. Int. Ed. 42, 4908 (2003).Google Scholar
[11] Choi, Y., Umebayashi, T., and Yoshikawa, M., J. Mater. Sci. 39, 1837 (2004).Google Scholar
[12] Irie, H., Watanabe, Y., and Hashimoto, K., Chem. Lett. 32, 772 (2003).Google Scholar
[13] Umebayashi, T., Yamaki, T., Itoh, H., and Asai, K., Appl. Phys. Lett. 81, 454 (2002).Google Scholar
[14] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., Science 293, 269 (2001).Google Scholar
[15] Tryba, B., Morawski, A.W., and Inagaki, M., Appl. Catal. B: Environ. 46, 203 (2003).Google Scholar
[16] Janus, M., Tryba, B., Inagaki, M., and Morawski, A.W., Appl. Catal. B: Environ. 52, 61 (2004).Google Scholar
[17] Noworyta, K. and Augustynski, J., Electrochem. Solid St. 7, E31 (2004).Google Scholar
[18] Enache, C.S., Schoonman, J., and van de Krol, R., J. Electroceram. 13, 177 (2004).Google Scholar
[19] Enache, C.S., Schoonman, J., and van de Krol, R., Appl. Surf. Sci., in press (2005).Google Scholar
[20] Tryba, B., Tsumura, T., Janus, M., Morawski, A.W., and Inagaki, M., Appl. Catal. B: Environ. 50, 177 (2004).Google Scholar