Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T06:28:55.938Z Has data issue: false hasContentIssue false

Properties of Binary Si:H Materials Prepared by Hydrogen Plasma Sputtering

Published online by Cambridge University Press:  21 February 2011

Shoji Furukawa
Affiliation:
Kyushu Institute of Technology, Faculty of Computer Science and Systems Engineering, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820, Japan
Tatsuro Miyasato
Affiliation:
Kyushu Institute of Technology, Faculty of Computer Science and Systems Engineering, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820, Japan
Get access

Abstract

Binary Si:H materials are prepared by means of the rf sputtering technique in pure hydrogen atmosphere on low temperature (about 100 K) and room temperature substrates. The physical properties of the obtained materials are very much affected by the rf power and substrate temperature during the deposition. The material prepared at a low substrate temperature with a low rf power has a wide optical gap, and shows a visible photoluminescence at room temperature. On the other hand, the material prepared at room temperature with a high rf power contains many Si microcrystals, whose diameters are relatively large, and its optical gap becomes very small. The latter condition causes the dependence of the crystalline direction of the material film on the substrate crystal even at the room temperature. An rf power-modulated multi-layered structure (superlattice) is also proposed, and an apparent diffraction peak can be observed in the low-angle X-ray scattering measurement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carlson, D.E., IEEE Trans. Electron Devices, ED–24, 449 (1977).Google Scholar
2. LeComber, P.G., Spear, W.E., and Ghaith, A., Electron. Lett. 15, 179 (1979).Google Scholar
3. Kishida, S., Nara, Y., Kobayashi, O., and Matsumura, M., Appl. Phys. Lett. 41, 1154 (1982).Google Scholar
4. Kaneko, S., Sakamoto, M., Okumura, F., Itano, T., Kataniwa, H., Kajiwara, Y., Kanamori, M., Yasumoto, M., Saito, T., and Ohkubo, T., Tech. Dig. Int. Electron Devices Meet., p.328, 1982.Google Scholar
5. Oda, S., Terazono, S., and Shimizu, I., Sol. Energy Mater. 8, 123 (1982).Google Scholar
6. Ishida, S., Imamura, Y., Takasaki, Y., Kusano, C., Hirai, T., and Nobutoki, S., Jpn. J. Appl. Phys. 22–1, 461 (1983).Google Scholar
7. Bosch, M.A., Appl. Phys. Lett. 40, 8 (1982).Google Scholar
8. Munekata, H. and Kukimoto, H., Appl. Phys. Lett. 42, 432 (1983).Google Scholar
9. Hamasaki, T., Kurata, H., Hirose, M., and Osaka, Y., Appl. Phys. Lett. 37, 1084 (1980).Google Scholar
10. Matsuda, A., Proc. Int. Conf. Amorphous & Liquid Semicond. edited by Tanaka, K. and Shimizu, T., p.767, 1983.Google Scholar
11. Furukawa, S., Komori, M., and Miyasato, T., Int. Conf. Phys. Semicond. Warsaw, 1988.Google Scholar
12. Furukawa, S. and Miyasato, T., Phys. Rev. B 38, 5726 (1988).Google Scholar
13. Furukawa, S. and Miyasato, T., Jpn. J. Appl. Phys. 27, L213 (1988).Google Scholar
14. Furukawa, S. and Miyasato, T., Superlattices and Microstructures, 5, 317 (1989).Google Scholar
15. Komori, M., Furukawa, S., and Miyasato, T., Phys. Lett. A 135, 401 (1989).Google Scholar
16. Lucovsky, G., Nemanich, R.J., and Knight, J.C., Phys. Rev. B 19, 2064 (1979).Google Scholar
17. Furukawa, S. and Matsumoto, N., Phys. Rev. B 31, 2114 (1985).Google Scholar
18. Furukawa, S., Matsumoto, N., Toriyama, T., and Yabumoto, N., J.Appl. Phys. 58, 4658 (1985).Google Scholar
19. Furukawa, S., Seki, M., and Maeyama, S., Phys. Rev. Lett. 57, 2029 (1986).Google Scholar
20. Furukawa, S. and Fujishiro, H. (unpublished).Google Scholar
21. Fujishiro, H., Furukawa, S., and Yamazaki, T. (to be published).Google Scholar