Article contents
Properties and Genesis of Hot Particles from the Chernobyl Reactor Accident
Published online by Cambridge University Press: 03 September 2012
Abstract
On April 25, 1986, the nuclear reactor Unit 4 (RBMK) at Chernobyl, Ukraine, exploded. Besides molecular species, the fallout contained particles of relatively high specific activity (hot particles) with a wide range of chemical compositions. The composition of a hot particle bears information about its genesis. Particle sizes ranged from a few to 100s of micrometers. Data on a hot particle, found in Berlin, Germany, is presented and discussed in context with earlier measurements on other particles to understand their genesis. The chemical composition was determined by electron probe micro analysis. Our particles are either reactor fuel (one) or fission product alloys (nine). The alloys were formed during normal reactor operation. Strongly varying concentrations of Fe and Ni suggest that at least some of our particles reacted with molten structural material of the reactor. The particles were mobilized by fuel oxidation or fuel dust generation during the accident. The fission product composition can only be explained if we assume that the alloys remained in the solid state in the course of the accident. Some particles may have been ejected during the explosion, others later while the reactor was burning. Activities (103Ru and 106Ru, originally up to 160,000 Bq) of our ten year old particles were re-measured but were no longer detectable. No long-lived γ-emitters were found. The 99Tc activity was calculated and found to only lBq. The γ -spectrum of the fuel particle still shows 137Cs (1 Bq) and 60Co (<1 Bq).
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
REFERENCES
- 8
- Cited by