Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:43:27.708Z Has data issue: false hasContentIssue false

Pronounced Photonic Effects of High-Pressure Water Vapor Annealing on Nanocrystalline Porous Silicon

Published online by Cambridge University Press:  01 February 2011

Bernard Gelloz
Affiliation:
[email protected], Tokyo Univ. A&T, Elec.&Elec. Eng., 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
Takayuki Shibata
Affiliation:
[email protected], Tokyo Univ. A&T, Elec.&Elec. Eng., 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
Romain Mentek
Affiliation:
[email protected], Tokyo Univ. A&T, Elec.&Elec. Eng., 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
Nobuyoshi Koshida
Affiliation:
[email protected], Tokyo Univ. A&T, Elec.&Elec. Eng., 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
Get access

Abstract

The effects of high-pressure water vapor annealing (HWA) on the refractive index of PS have been studied. HWA was conducted at 260 °C and 1.3 MPa, for 3 h. The refractive index (real part n and imaginary part k) was estimated by fitting reflectivity spectra. HWA considerably modifies the layers refractive index. It enhances the optical transparency of PS, particularly at short wavelengths down to below 400 nm. Both n and k are significantly reduced by HWA between 400 nm and 850 nm. These results are attributed to the high level of oxidation of PS after HWA. The high transparency of the treated layers enables Si-based photonics in the full visible range and also in the near UV range. Distributed Bragg reflectors (DBRs) have been fabricated. The central wavelengths appear blue-shifted compared to untreated samples due to the reduced refractive index. Almost no changes could be found in the reflectivity properties after one year storage in air for HWA-treated DBRs. Therefore, HWA is very useful for getting stable practical photonics devices in the visible and near UV range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cullis, A. G., Canham, L. T. and Calcott, P. D. J., J. Appl. Phys. 82, 909 (1997)10.1063/1.366536Google Scholar
2. Gelloz, B. and Koshida, N., in The Handbook of Electroluminescent Materials, edited by Vij, D. R. (Institute of Physics Publishing, Bristol, 2004), Chap. 10, pp. 393475 Google Scholar
3. Bisi, O., Ossicini, S. and Pavesi, L., Surf. Sci. Rep. 38, 5 (2000)10.1016/S0167-5729(99)00012-6Google Scholar
4. Reece, P. J., Lerondel, G., Zheng, W. H. and Gal, M., Appl. Phys. Lett. 81, 4895 (2002)10.1063/1.1531226Google Scholar
5. Ghulinyan, M., Oton, C. J., Bonetti, G., Gaburro, Z. and Pavesi, L., J. Appl. Phys. 93, 9724 (2003)Google Scholar
6. Tsybeskov, L., Duttagupta, S. P. and Fauchet, P. M., Solid State Commun. 95, 429 (1995)10.1016/0038-1098(95)00294-4Google Scholar
7. Gelloz, B., Nakagawa, T. and Koshida, N., Appl. Phys. Lett. 73, 2021 (1998)Google Scholar
8. Gelloz, B. and Koshida, N., J. Appl. Phys. 88, 4319 (2000)10.1063/1.1290458Google Scholar
9. Gelloz, B., Sano, H., Boukherroub, R., Wayner, D. D. M., Lockwood, D. J. and Koshida, N., Appl. Phys. Lett. 83, 2342 (2003)10.1063/1.1613812Google Scholar
10. Buriak, J. M., Chem. Rev. 102, 1271 (2002)10.1021/cr000064sGoogle Scholar
11. Gelloz, B., Kojima, A. and Koshida, N., Appl. Phys. Lett. 87, 031107 (2005)Google Scholar
12. Gelloz, B. and Koshida, N., J. Appl. Phys. 98, 123509 (2005)Google Scholar
13. Gelloz, B. and Koshida, N., Jpn. J. Appl. Phys., Part 1 45, 3462 (2006)Google Scholar
14. Gelloz, B., Shibata, T. and Koshida, N., Appl. Phys. Lett. 89, 191103 (2006)Google Scholar
15. EMIS Datareviews Series, edited by Canham, L. T. (INSPEC, The Institution of Electrical Engineers, London, 1997), Vol. 18, pp. 223246 Google Scholar
16. Theiss, W., Arntzen, M., Hilbrich, S., Wernke, H., Arensfischer, R. and Berger, M. G., Phys. Status Solidi B 190, 15 (1995)Google Scholar