Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:00:17.975Z Has data issue: false hasContentIssue false

PROGRESS TOWARDS MELANIN INTEGRATION IN BIO-INSPIRED DEVICES

Published online by Cambridge University Press:  12 June 2012

M. Ambrico
Affiliation:
CNR-Istituto di Metodologie Inorganiche e dei Plasmi, Sezione Territoriale di Bari Via Orabona 4, 70125 Bari (Italy)
P. F. Ambrico
Affiliation:
CNR-Istituto di Metodologie Inorganiche e dei Plasmi, Sezione Territoriale di Bari Via Orabona 4, 70125 Bari (Italy)
A. Cardone
Affiliation:
CNR-Istituto di Chimica dei Composti OrganoMetallici-UOS di Bari Via Orabona 4, 70125 Bari (Italy)
T. Ligonzo
Affiliation:
Dipartimento Interateneo di Fisica, Università degli Studi di Bari “Aldo Moro” Via Orabona 4, 70125 Bari (Italy)
S. R. Cicco
Affiliation:
CNR-Istituto di Chimica dei Composti OrganoMetallici-UOS di Bari Via Orabona 4, 70125 Bari (Italy)
A. Lavizzera
Affiliation:
Dipartimento Interateneo di Fisica, Università degli Studi di Bari “Aldo Moro” Via Orabona 4, 70125 Bari (Italy)
V. Augelli
Affiliation:
Dipartimento Interateneo di Fisica, Università degli Studi di Bari “Aldo Moro” Via Orabona 4, 70125 Bari (Italy)
G. M. Farinola
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro” via Orabona 4, 70125 Bari (Italy)
Get access

Abstract

The integration of biopolymers into hybrid electronics is one of the up to date issues in view of the achievement of fully bio-compatible devices. Among ‘hot topics’ in bio-polymer research, synthetic melanin or, briefly, “melanin”, has been recently recognized as a quite intriguing macromolecule thanks to its multifunctional optoelectronic properties. To date, melanin transport properties have been mainly enlightened on pellets, while optical absorption and conductivity properties have been investigated on melanin layers deposited on quartz and indium tin oxide/glass. The unavailability of suitable procedures to improve or promote adequate self assembling of melanin layer deposition onto substrate of interest in organic and solid state electronics (hybrid) like silicon substrates, prevent interesting studies on such structures. The reason stems basically on the difference between the hydrophilic nature of the melanin and the hydrophobic one of the supports (mostly of silicon). However, our group solved this issue and was able to tailor a melanin based metal/insulator/metal and metal/insulator/silicon structures, where synthetic melanin was embedded as the insulating part. This allowed to disclose interesting features related to data storage capabilities of melanin layers deposited on indium tin oxide/glass and silicon never investigated so far. In this work we show an overview on our recent mentioned results, and particular attention is paid on structures on silicon substrates. The use of pSi and nSi substrates and measurements under different environment conditions has enabled to gain insight into ambipolar electrical transport mechanisms, still unexplored. These results constitute a first important basic insight into melanin-based bio inspired structures and represent a significant step towards their integration in several kinds of hybrid organic polymer-based devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mc Ginnes, J., Corry, P. and Proctor, P., Science 183 (1974) 853 10.1126/science.183.4127.853Google Scholar
[2] Ligonzo, T., Ambrico, M., Augelli, V., Perna, G., Schiavulli, L., Tamma, M.A., Biagi, P.F., Minafra, A. and Capozzi, V., J. Non-Cryst. Solids, 355 (2009) 1221 10.1016/j.jnoncrysol.2009.05.014Google Scholar
[3] Jatstrzebska, M., Kocot, A. and Tajber, L., J. Photochem. and Photobiol. B: Biology 66 (2002) 201 10.1016/S1011-1344(02)00268-3Google Scholar
[4] Jatstrzebska, M., Kocot, A., Vij, J.K., Zalewska-Rejdak, J. and Witecki, T., J. Mol. Struct., 606 (2002) 205 10.1016/S0022-2860(01)00873-0Google Scholar
[5] Bothma, J.P., deBoor, J., Divakar, U., Schwenn, P.E. and Meredith, P., Adv.Mat., 20 (2008) 3539 10.1002/adma.200703141Google Scholar
[6] Meredith, P., Powell, B.J., Riesz, J., Nighswander-Rempel, S.P., Pederson, M.R. and Moore, E.G., Soft Matt., 2 (2006) 37 10.1039/B511922GGoogle Scholar
[7] Rosei, M.A., Mosca, L. and Galluzzi, F., Synth. Metals. 76 (1996) 331 10.1016/0379-6779(95)03483-ZGoogle Scholar
[8] Ambrico, M., Cardone, A., Ligonzo, T., Augelli, V., Ambrico, P.F., Cicco, S., Farinola, G.M., Filannino, M., Perna, G. and Capozzi, V., Org. Electron. 11 (2010)1809 10.1016/j.orgel.2010.08.001Google Scholar
[9] de Albuquerque, J.E., Giacomantonio, C., White, A.G. and Meredith, P., Appl.Phys.Lett. 87 (2005) 061920 10.1063/1.2009833Google Scholar
[10] Grishchuk, V.P., Davidenko, S.A, Zholner, I.D., Verbitsckii, A.B., Kurik, M.V. and Piryatinskii, Y.P., Techn. Phys. Lett., 28 (2002) 896 10.1134/1.1526875Google Scholar
[11] Stark, K.B., Gallas, J.M., Zajac, G.W., Eisner, M., Golab, J.T., J.Phys.Chem.B 107 (2003) 3061 10.1021/jp0266594Google Scholar
[12] Tran, M.L., Powell, B.J. and Meredith, P., Biophys.Journ. 90 (2006) 743 and refs. therein 10.1529/biophysj.105.069096Google Scholar
[13] Pezzella, A., Iadonisi, A., Valerio, S., Panzella, L., Napolitano, A., Adinolfi, M., and d’Ischia, M., J. Am.Chem.Soc. Vol. 131 (2009) 15270 10.1021/ja905162sGoogle Scholar
[14] Sangaletti, L., Borghetti, P., Ghosh, P., Pagliara, S., Vilmercati, P., Castellarin-Cudia, C., Floreano, L., Cossaro, A., Verdini, A., Gebauer, R. and Goldoni, A., Phys. Rev.B 80 (2009) 174203 10.1103/PhysRevB.80.174203Google Scholar
[15] Ambrico, M., Ambrico, P.F., Cardone, A., Ligonzo, T., Cicco, S.R. di Mundo, R., Augelli, V., Farinola, G.M. Adv. Mater. 23 (2011) 3332 10.1002/adma.201101358Google Scholar
[16] Ritter, D., Weiser, K., Opt. Comm. 57 (1986) 336 10.1016/0030-4018(86)90270-1Google Scholar
[17] Groenewoud, Wim in Characterization of polymers by thermal analysis, Elsevier Science, 2001, The Netherland Google Scholar
[18] Pohl, H.A., Journal of Electr. Mater. 15 (1986) 201.10.1007/BF02659632Google Scholar
[19] Majumdar, H.S., Bandyopadhyay, A., Bolognesi, A. and Pal, A.J., J.Appl.Phys. 91 (2002) 2433 10.1063/1.1445281Google Scholar
[20] Brutting, W., Riel, H., Beierlein, T. and Reiss, W. J.Appl.Phys. 89 (2001) 1704 10.1063/1.1332088Google Scholar
[21] Lin, Y-J., J.Appl.Phys. 103 (2008 )063702 10.1063/1.2885096Google Scholar
[22] Li, L., Ling, Q.D., Lim, S.L., Tan, Y. P., Zhu, C., Chan, D. S. H., Kang, E.T. and Neoh, K.G., Org. Electron. 8 (2007) 401 10.1016/j.orgel.2007.02.002Google Scholar
[23] Nicollian, E. H., Brews, J. R., in MOS physics and Technology, Wiley, New York, NY, 1981.Google Scholar
[24] Leong, W. L., Lee, P. S., Lohani, A., Lam, Y. M., Chen, T., Zhang, S., Dodabalapur, A. and Mhaisalkar, S. G. Adv.Mat. 20 (2008) 2325 10.1002/adma.200702567Google Scholar
[25] Martin, B., Kliem, H., J. Appl. Phys. 107 (2010) 076103.10.1063/1.3366703Google Scholar
[26] Martin, B., Kliem, H., Appl. Phys. Lett. 95 (2009) 032901.10.1063/1.3184791Google Scholar
[27] Ambrico, M., Ambrico, P.F., Cardone, A., Ligonzo, T., Cicco, S.R. Lavizzera, A., Augelli, V., Farinola, G.M. Appl.Phys.Lett., under review Google Scholar