Published online by Cambridge University Press: 16 January 2014
Colloids with anisotropic shape and properties can enable the assembly of advanced materials otherwise not attainable by microfabrication. In this study, we present a convenient method using common microfabrication tools to generate a diverse array of non-spherical microparticles with well-defined shapes, sizes, electromagnetic properties for self-assembly applications. Projection photolithography onto SU-8 photoresist enabled the production of large aspect ratio microparticles such as cubes, cuboids, cylinders, hexagonal prisms, and parallelepipeds. We characterized these particles to confirm their anisotropic shape and size monodispersity. Fluorescent stains (e.g., Nile red) were mixed into the photoresist prepolymer to enhance the visualization of particle orientation. Particles designed for passive self-assembly were prepared by conventional photolithographic techniques. Particles designed for active assembly were then decorated with metallic patches in precise locations along the surface (e.g., top, side or multiple sides) using electron beam metal evaporation. This metal deposition process can enable orientational control of particles during their assembly in directed fields. After fabrication, large particles (e.g., 1,000 µm3) were released from the substrate via gentle sheer forces, whereas small particles (e.g., 10 µm3) were released by the dissolution of a sacrificial layer underneath the SU-8. Suspending the particles in water with surfactant (or other suitable solvents) provided amenable conditions for their assembly in static or dynamic systems. These conventional methods have the potential to catalyze new research in the fabrication and assembly of anisotropic patchy particles with controllable properties for the hierarchical development of self-assembled micromirrors, biosensors, and photonic crystals as examples.