Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:28:34.647Z Has data issue: false hasContentIssue false

Production of Microstructures by Laser Pyrolysis

Published online by Cambridge University Press:  15 February 2011

Dieter Bä;uerle*
Affiliation:
Angewandte Physik, University of Linz, 4040 Linz, Austria
Get access

Abstract

Laser pyrolysis at short wavelengths is a powerful tool for micron-sized one-step local deposition of insulating, semiconducting and metallic materials from the gas phase. Various structures, e.g. stripes on different substrates, and rods of various lengths and diameters, have been produced. The morphology of the deposited material, the deposition rate, and the dimensions (typically 1-300 μm) of the structures were investigated quantitatively as functions of laser irradiance local temperature, laser focus diameter, scanning velocity, and gas pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lydtin, H. in: Proc. 3rd Int. Conf. on Chemical Vapor Deposition, Glaski, F. A. ed., Hinsdale 1972, pp. 121.Google Scholar
2. Nelson, L. S. and Richardson, N. L., Mat. Res. Bull. 7, 971 (1972).CrossRefGoogle Scholar
3. Berg, R. S. and Mattox, D. M. in: Proc. 4th Int. Conf. on Chemical Vapor Deposition, Glaski, F. A. ed., Hinsdale 1973, pp. 196–204.Google Scholar
4. Christensen, C. P. and Lakin, K. M., Appl. Phys. Lett. 32, 254 (1978).Google Scholar
5. Allen, S. D. and Bass, M., J. Vac. Sci. Technol. 16, 431 (1979).Google Scholar
6. Baranauskas, V. et al. , Appl. Phys. Lett. 36, 930 (1980).Google Scholar
7. Leyendecker, G. et al. , Appl. Phys. Lett. 39, 921 (1981).CrossRefGoogle Scholar
8. Bäuerle, D. et al. , Appl. Phys. B 28, 267 (1982).Google Scholar
9. Leyendecker, G. et al. , J. Electrochem. Soc. (1982).Google Scholar
10. Ehrlich, D. J. et al. , Appl. Phys. Lett. 39, 957 (1981).Google Scholar
11. Bäuerle, D. et al. , Appl. Phys. Lett. 40, 819 (1982).Google Scholar
12. Rytz-Froidevaux, Y. et al. , Appl. Phys. A 27, 133 (1982).CrossRefGoogle Scholar
13. Kräuter, W. and Bäuerle, D., Appl. Phys. (1982).Google Scholar
14. For a review see e. g.: Ehrlich, D. J. et al. , IEEE J. Quantum Electron.,. QE 16, 1233 (1980).CrossRefGoogle Scholar
15. For a review see e. g.: Bloem, J. and Giling, L. J. in: Current Topics in Materials Science, Kaldis, E. ed. (North-Holland, New York 1978) Vol. 1, pp. 147342. Google Scholar
16. Kräuter, W. et al. , (to be published).Google Scholar
17. Palmer, H. B. and Cullis, C, F., Chemistry and Physics of Carbon 1, 265 (1965).Google Scholar
18. Eversteijn, F. C., Philips Res. Repts. 26, 134 (1971).Google Scholar
19. Purnell, J. H. and Walsh, R., Proc. R. Soc. A 293, 543 (1966).Google Scholar
20. Lampert, M. O. et al. , J. Appl. Phys. 52, 4975 (1981).Google Scholar