Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:21:57.239Z Has data issue: false hasContentIssue false

Production of InSb Thin Films Through Annealing Sb2S3-In Thin Films

Published online by Cambridge University Press:  10 February 2011

M. T. S. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autonoma de México, A. P. 34, Temixco, Morelos 62580, MEXICO, [email protected]
Y. Rodríguez-Lazcano
Affiliation:
Permanent address: Faculty of Physics-IMRE, University of Havana, Cuba
P. K. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autonoma de México, A. P. 34, Temixco, Morelos 62580, MEXICO, [email protected]
Get access

Abstract

A method to produce large area indium antimonide thin films through a reaction, Sb2S3 + 2 In → 2 InSb + 3 S↑ is presented. A thin film of Sb2S3 with typically 0.2 μm thickness is produced on glass substrate by chemical bath deposition (CBD) at 10°C using thiosulfatoantimonate(III) complex. Subsequently, a thin film of indium is deposited on the Sb2S3 film by thermal evaporation. Annealing the thin film stack of Sb2S3-In at 300°C in a nitrogen atmosphere produces the InSb thin film. The formation of this film is confirmed by x-ray diffraction studies. We would discuss the optimization of the individual film thickness in the Sb2S3-In stack to produce a thin film of single phase InSb or a heterostructure, Sb2S3-InSb. The electrical and optical properties of the films are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carpenter, M. K. and Verbrugge, M. W., J. Mater. Res., 9, p. 2584 (1994).Google Scholar
2. Sze, S. M., Physics of semiconductor Devices, Wiley, New York, 1981 p. 849 and 751.Google Scholar
3. Yamauchi, S., Hariu, T., Ohba, H., ar.d Sawamura, K., Thin Solid Films, 316, p. 93 (1998).Google Scholar
4. Nair, P. K., Nair, M. T. S., García, V. M., Arenas, O. L., Peña, Y., Castillo, A., Ayala, I. T., GomezDaza, O., Sánchez, A., Campos, J., Hu, H., Suárez, R., and Rincón, M. E., Solar Energy Materials and Solar Cells, 52, p. 313 (1998).Google Scholar
5. Nair, P. K., Huang, L., Nair, M. T. S., Hu, Hailin, Meyers, E. A., and Zingaro, R. A., J. Materials Research 12, p. 651 (1997).Google Scholar
6. Nair, M. T. S., Peña, Y., Campos, J., García, V. M. and Nair, P. K., J. Electrochem. Soc., 145, p. 2113 (1998).Google Scholar
7. George, P. J., Sánchez, A., Nair, P. K. and Nair, M. T. S., Applied Physics Letters 66 3624 (1995).Google Scholar
8. García, V. M., George, P. J., Nair, M. T. S. and Nair, P. K., J. Electrochem. Soc., 143, p. 2892 (1996).Google Scholar
9. García, V. M., Nair, M. T. S. and Nair, P. K., Semicond. Sci. Technol. 14 (1999 at Press).Google Scholar