Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T16:33:23.026Z Has data issue: false hasContentIssue false

Production of GaAs and InP Based Heterostructures

Published online by Cambridge University Press:  28 February 2011

H. Jorgensen
Affiliation:
AIXTRON GmbH, Jülicher Straße 336-338, 5100 Aachen, FRG
R. K. Schreiner
Affiliation:
AIXTRON GmbH, Jülicher Straße 336-338, 5100 Aachen, FRG
M. Deschler
Affiliation:
AIXTRON GmbH, Jülicher Straße 336-338, 5100 Aachen, FRG
Get access

Abstract

The complete requested range of epitaxial deposition from one monolayer to tens of microns is available integrating LP-MOVPE and LP-VPE into wafer fabrication. Uniformity across 2 inch wafers for thickness, composition, and doping show a variation of less than 2 %. Electrical properties of the 1014 cm−3range and less for background doping, carrier mobilities of 210,000 cm2/Vs for AIGaAs and 190,000 cm2/Vs for GalnAs, both HEMT structures, are achieved. FWHM of 3.4 meV and 18.6 meV for 10 nm and 2 nm GaInAsP wells have been measured. GaAsP layers including a “graded” layer reveal FWHM of 15 nm. A new model for the understanding of high growth rates in the hydride system is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

/1/ Hirtz, J.P., Razeghi, M., Bonnet, M., and Duchemin, J.P., in Pearsall, T.P. (ed.), GalnAsP Alloy Semiconductors, Part 2, John Wiley & Sons, Chichester, 1982, p. 61.Google Scholar
/2/ Cox, H.M., Koza, M.A., Keramidas, V.G., Young, M.S. J. Cryst. Growth, 73 (1985) 523.Google Scholar
/3/ Olsen, G.H. in Pearsall, T.P. (ed.), GalnAsP Alloy Semiconductors, Part 2, John Wiley & Sons, Chichester, 1982, p. 11.Google Scholar
/4/ Selders, J., Wachs, H.J. and Jürgensen, H. Electron. Lett., 22 (1986) 313.Google Scholar
/5/ Craford, M.G. in Progress in Solid State Chemistry, Vol. 8, Pergamon Press, Oxford, 1973, p. 137.Google Scholar
/6/ Pütz, N., Veuhoff, E., Bachem, K.H., Balk, P., Lüth, H. J. Electrochem. Soc., 128 (1981) 2202.Google Scholar
/7/ GrOter, K., Deschler, M., Jorgensen, H., Beccard, R. and Balk, P. J. Cryst. Growth, in the PressGoogle Scholar
/8/ Pauw, L.H. van der Philips Res. Repts., 13 (1958) 1.Google Scholar
/9/ Schmitz, D., Strauch, G., Knauf, J., Jürgensen, H., Heyen, M. and Wolter, K. J. Cryst. Growth, 93 (1988) 312.Google Scholar
/10/ Meyer, R., GrCitzmacher, D., Jjrgensen, H., and Balk, P. J. Cryst. Growth, 93 (1988) 285.Google Scholar
/11/ Grützmacher, D., Meyer, R., Zachau, M., Helgesen, P., Zrenner, A., Wolter, K., JOrgensen, H., Koch, F. and Balk, P. J. Cryst. Growth, 93 (1988) 382.Google Scholar
/12/ Engel, M., Grützmacher, D., Bauer, R.K., Bimberg, D. and Jürgensen, H. J. Cryst. Growth, 93 (1988) 359.Google Scholar
/13/ Gritzmacher, D., Wolter, K., Zachau, M., JLrgensen, H., Kurz, H. and Balk, P. Inst. Phys. Conf. Ser. No 91, 7 (1988) 613.Google Scholar
/14/ Heuken, M., Heime, K., personal communicationGoogle Scholar
/15/ Thijs, P.J.A., Lagemaat, J. M., Woltjer, R. Electron. Lett., 24 (1988) 226.Google Scholar
/16/ Unlu, H., Morkog, H. Solid State Techn., 3 (1988) 83.Google Scholar
/17/ Veuhoff, E., Pütz, N., Korec, J., Heyen, M., Balk, P. J. Electr. Mat., 12 (1988) 235.Google Scholar
/18/ Deschler, M., Gruter, K., Schlegel, A., Jüirgensen, H. and Balk, P. in Les Editions de Physique, Nougier, J.P., Gasquet, O. (ed.), Proc. Europ. Conf. on Solid State Device Research, Montpellier, 1988, p. 689.Google Scholar