Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:41:56.816Z Has data issue: false hasContentIssue false

Producing ultrashort Terahertz to UV photons at high repetition rates for research into materials

Published online by Cambridge University Press:  01 February 2011

G. R. Neil
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
C. Behre
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
S. V. Benson
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
G. Biallas
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
J. Boyce
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
L. A. Dillon-Townes
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
D. Douglas
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
H. F. Dylla
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
R. Evans
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
A. Grippo
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
D. Gruber
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
J. Gubeli
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
C. Hernandez-Garcia
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
K. Jordan
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
M. J. Kelley
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
L. Merminga
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
J. Mammosser
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
N. Nishimimori
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
J. Preble
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
R. Rimmer
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
M. Shinn
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
T. Siggins
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
R. Walker
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
G. P. Williams
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
S. Zhang
Affiliation:
Thomas Jefferson National Accelerator Facility Newport News VA 23606, USA
Get access

Abstract

A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on a Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches.

These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ∼ half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power (see G. P. Williams, this conference).

The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300–1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation.

The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser vapor deposition, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the opportunities provided by this unique light source for modifying and studying materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carr, , et al., Nature 420, 153156 (2002).Google Scholar
2. Neil, , et al., Phys. Rev. Lett. 84, 662665 (2000).Google Scholar
3. Douglas, D. R., et al., Proc. Linac 2000, Monterey, August 21–25, 2000.Google Scholar
4. Benson, S. V., Biallas, G., Boyce, J., Douglas, D., Dylla, H. F., Evans, R., Grippo, A., Gubeli, J., Jordan, K., Krafft, G., Li, R., Mammosser, J., Merminga, L., Neil, G. R., Phillips, L., Preble, J., Shinn, M., Siggins, T., Walker, R., and Yunn, B., Proceedings: 2001 Particle Accelerator Conference, Lucas, Peter W., Webber, Sara, editors, IEEE, Piscataway, NJ, 2001.Google Scholar
5. Siggins, Tim, Sinclair, Charles, Bohn, Court, Bullard, Donald, Douglas, David, Grippo, Al, Gubeli, Joe, Krafft, Geoffrey A, Yunn, Byung, Nucl. Instr. And Meth., A475, 549 (2001).Google Scholar
6. Delayen, J. R. et al., PAC’99, pp. 934–6, New York, 29 March-2 April, 1999.Google Scholar
7. Flanz, J. et al., Nucl. Inst. Meth. A241:325–33 (1985).Google Scholar
8. Benson, S., Nucl. Inst. And Meth. In Phys. Res., A507, 4043 (2003).Google Scholar
9. Benson, S., Proc. 23rd Int'l FEL Conf., Darmstadt, Germany, August 20–24, 2001. To be published in Nucl. Instr. and Meth. Google Scholar
10. Neil, G. R., et al., Phys. Rev. Letter, 87, 84801 (2001).Google Scholar
11. Boyce, J.R., “Intra-cavity Thomson Scattering,” Section 2.5.2, Femtosecond Beam Science, ed. M. Uesaka, World Scientific, In Press.Google Scholar
12. Benson, S., Shinn, Michelle, and Neil, G. R., Nucl. Instr. and Meth. A475 531 (2001).Google Scholar
13. Dylla, H. F., Laser Focus World, August 2001.Google Scholar
14. Kelley, M. J., et al, SPIE Int'l. Society for Optical Eng., Issue 2703 pp. 1520 (1996).Google Scholar
15. Dylla, H. F., SPIE Vol. 3618 (1999).Google Scholar
16. Dylla, H. F. et al., SPIE Vol. 3925 4049, (2000).Google Scholar
17. Austin, R., Phys. Rev. Letter 84, 5435 (2000).Google Scholar
18. Budde, M. et al., Phys. Rev. Letter 85, 1452 (2000).Google Scholar
19. Lupke, G., Zhang, X., Sun, B., Fraser, A., Tolk, N. H., and Feldman, L. C., Phys. Rev. Lett. 88, 135501 (2002).Google Scholar
20. Shinn, M., SPIE Vol. 4065, 434440 (2000).Google Scholar
21. Kelley, Michael J. in Kumar, D. et al. (Eds.), Laser-Solid Interactions for Materials Processing Proc. Mat. Res. Soc. Symp., 617 (2000).Google Scholar
22. Carpene, E. and Schaaf, P., Mat. Res. Soc. Symp. Proc. 780, Y5.8.1 (2003).Google Scholar
23. Eklund, P. C., Pradhan, B. K., Kim, U. J., Xiong, Q., Fischer, J. E., Friedman, A. D., Holloway, B. C., Jordan, K. and Smith, M. W. Nano Letters 2, 561 (2002).Google Scholar
24. Helvajian, H. (Ed.), Microengineering Aerospace Systems, AIAA, Reston, VA (1999).Google Scholar