Article contents
Processing, X-Ray, and TEM Studies of QS87 Series 56 KΩ/Square Thick Film Resistors
Published online by Cambridge University Press: 10 February 2011
Abstract
Thick film resistors are glass/metal oxide nanocomposites used in hybrid microcircuits. These components have a small temperature coefficient of resistance that is useful in systems that experience a wide range of service temperatures. Test samples were produced by printing, drying, and firing resistor pastes in a laboratory process that simulated production conditions. The process parameters of peak firing temperature, time at peak temperature, and probe current were factors in a 23 factorial experiment that measured in-situ resistance (resistance during processing), as-fired resistance, and the temperature coefficients of resistance. As-fired resistance is shown to increase with firing time and temperature. In-situ resistance exhibited a small decrease with increasing firing temperature due to thermally-activated glass conduction at firing temperatures. The temperature coefficient of resistance measurements show that R[T] curve flattens with increasing firing time and temperature. X-ray diffraction revealed Pb-ruthenate, alumina, and Zr-silicate phases to be dispersed in the glass. Transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy revealed that the conductive phases, Pb- and CuBi-ruthenate particles, increased in size with increasing firing time and temperature. Lattice parameter measurements revealed only a small increase in the ruthenate structure. Resistance changes are attributed to increased separation of the conductive ruthenate particles by coarsening.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
REFERENCES
- 1
- Cited by