Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:02:52.196Z Has data issue: false hasContentIssue false

Processing, Properties and Applications of Gamma Titanium Aluminide Sheet and Foil Materials

Published online by Cambridge University Press:  15 February 2011

H. Clemens
Affiliation:
Plansee Aktiengesellschaft, Technology Center, A-6600 Reutte, Austria
W. Glatz
Affiliation:
Institut fur Metallkunde und Werkstoffprüfung, Montanuniversität, A-8700 Leoben, Austria
N. Eberhardt
Affiliation:
Institut fur Metallkunde und Werkstoffprüfung, Montanuniversität, A-8700 Leoben, Austria
H.-P. Martinz
Affiliation:
Plansee Aktiengesellschaft, Technology Center, A-6600 Reutte, Austria
W. Knabl
Affiliation:
Plansee Aktiengesellschaft, Technology Center, A-6600 Reutte, Austria
Get access

Abstract

Intermetallic γ-TiAl based alloys (”γ-alloys”) have a great potential to become important materials for advanced applications in aerospace, automotive and related industries. Research and development on γ-alloys have progressed significantly within the last decade. This research has led to a better understanding of the fundamental correlations between alloy composition and microstructure, processing behaviour and mechanical properties. This paper describes the progress in sheet rolling of γ-TiAl based alloys on industrial scale. Employing an advanced hot-rolling process sheets with lengths >1000 mm have been rolled. Furthermore, first results of foil rolling are presented. The mechanical properties of γ-TiAl sheet material with regard to processing route, alloy composition and microstructure are summarized and discussed. Sheet forming by means of superplastic forming and conventional metal forming techniques has successfully been conducted. Different joining techniques have been studied for γ-alloys including solid-state diffusion bonding. The oxidation resistance of γ-alloys is higher than that of Ti-alloys, however, for long-term applications at temperatures >700°C the need for reliable oxidation protective coatings is anticipated. Recent results of cyclic oxidation tests on coated γ-TiAl sheet are presented. Finally, the results of a stability test conducted on a γ-TiAl panel at 750°C are summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Semiatin, S.L., Vollmer, D.C., El-Soudani, S.M., and Su, C., Scripta metall. mater. 24, 1409 (1990).Google Scholar
2. Semiatin, S.L., Ohls, M. and Kerr, W.R., Scripta metall. mater. 25, 1851 (1991).Google Scholar
3. Semiatin, S.L. and Seetharaman, V., Metall. Mater. Trans. A 25, 2539 (1994).Google Scholar
4. Semiatin, S.L., in Gamma Titanium Aluminides. edited by Kim, Y.-W., Wagner, R. and Yamaguchi, M. (TMS, Warrendale, PA, 1995), pp. 509524.Google Scholar
5. Semiatin, S.L. and Seetharaman, V., Metall. Mater. Trans. A 26, 371 (1995).Google Scholar
6. Fujitsuna, N., Miyamoto, Y. and Ashida, Y., in Structural Intermetallics. edited by Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS, Warrendale, PA, 1993), pp. 187194.Google Scholar
7. Kaibyshew, O., presented at the International Workshop on TiAl, Kloster Irsee, Germany, 1994 (unpublished).Google Scholar
8. Clemens, H., Schretter, P., Wurzwallner, K., Bartels, A., and Koeppe, C., in Ref. [6], p. 205.Google Scholar
9. Clemens, H., Glatz, W., Schretter, P., Koeppe, C., Bartels, A., Behr, R., and Wanner, A., in Ref. [4], pp. 717726.Google Scholar
10. Clemens, H., Z. Metallkd. 86, 814 (1995).Google Scholar
11. Yolton, C.F., in P/M in Areospace and Defence Technologies. Vol. 1, edited by Froes, F.H. (MPIF, Princeton, NJ, 1989), pp. 123132.Google Scholar
12. Gerling, R., Schimanski, F.-P. and Wagner, R., in Advances in Powder Metallurgy & Participate Materials. Vol. 1, edited by Capus, J.M. and German, R.M. (MPIF, Princeton, NJ, 1992), pp. 215222.Google Scholar
13. Wurzwallner, K., Clemens, H., Schretter, P., Bartels, A., and Koeppe, C., in High-Temperature Ordered Intermetallic Alloys V. edited by Baker, I., Darolia, R., Whittenberger, J.D., and Yoo, M.H. (Mater. Res. Soc. Proc. 288, Pittsburgh, PA, 1993), pp. 867872.Google Scholar
14. Clemens, H., Glatz, W., Schretter, P., Yolton, C.F., Jones, P.E., and Eylon, D., in Ref [4], pp. 555562.Google Scholar
15. Beekman, I.P., Clemens, H., Schretter, P., Glatz, W., Jones, P.E., Eylon, D., and Yolton, C.F., in 8th World Conference on Titanium: Titanium '95 - Science and Technology, edited by Blenkinsop, P.A., Evans, W.J. and Flower, H.M. (The Institute of Metals, London, UK, 1996), pp. 217224.Google Scholar
16. Wurzwallner, K., Schretter, P. and Clemens, H., in Proc. 13th International Plansee Seminar. Vol. 3, edited by Bildstein, H. and Eck, R. (Plansee AG, Tyrol, Austria, 1993), pp. 537551.Google Scholar
17. Kim, Y.-W., JOM 46(7), 30 (1994).Google Scholar
18. Koeppe, C., Bartels, A., Clemens, H., Schretter, P., and Glatz, W., Mater. Sci. Eng. A 201, 182(1995).Google Scholar
19. Smarsly, W., private communication (1996).Google Scholar
20. Clemens, H., Glatz, W. and Schretter, P., Prakt. Metallogr. 33, 17 (1996).Google Scholar
21. Bartels, A., Clemens, H., Hartig, Ch., and Mecking, H., these proceedings.Google Scholar
22. Kim, Y.-W., in Ref. [4], pp. 637654.Google Scholar
23. Liu, C.T., Maziasz, P.J., Pawel, S.I, Schneibel, J.H., Sikka, V.K., Walker, L.R., Clemens, D.R., Nieh, T.G., in Ref. [4], pp. 679688.Google Scholar
24. Clemens, H., Glatz, W. and Appel, F., Scripta metall. mater. 35, 429 (1996).Google Scholar
25. Clemens, H., Glatz, W., Schretter, P., Klassen, M., Schubert, E., Sepold, G., Fleischer, Th., Schrock, H.W., and Franke, R., Spacecraft Structures. Materials and Mechanical Testing. European Space Agency, SP-386, Vol. 3, Noordwijk, The Netherlands, 1996, pp. 12971304.Google Scholar
26. Kim, Y.-W., JOM 41(7), 24(1989).Google Scholar
27. Huang, S.C. and Chesnutt, J.C, in Intermetallic Compounds - Principles and Practice. Vol. 2, edited by Westbrook, J.H. and Fleischer, R.L. (Wiley & Sons, West Sussex, UK, 1994), pp. 7390.Google Scholar
28. Appel, F., Clemens, H. and Wagner, R., in Fatigue and Fracture of Ordered Intermetallic Materials III, edited by Soboyejo, W.O., Srivatsan, T.S. and Fraser, H.L. (TMS, Warrendale, PA, 1996), in print.Google Scholar
29. Appel, F., Clemens, H., Glatz, W., and Wagner, R., these proceedings.Google Scholar
30. Chan, K.S. and Kim, Y.-W., Metall. Mater. Trans. A 23, 1663 (1992).Google Scholar
31. Behr, R., Wanner, A., Clemens, H., and Glatz, W., in High-Temperature Ordered Intermetallic Alloys VI. edited by Horton, J.A., Baker, I., Hanada, S., Noebe, R.D., and Schwartz, D.S. (Mater. Res. Soc. Proc. 364, Pittsburgh, PA, 1995), pp. 781786.Google Scholar
32. Mitao, S., Tsuyama, S. and Minakawa, K., in Microstructure-Propertv Relationships in Titanium Aluminides and Alloys, edited by Kim, Y.-W. and Boyer, R.R. (TMS, Warrendale, PA, 1991), pp. 297311.Google Scholar
33. Dimiduk, D.M., Miracle, D.B., Kim, Y.-W., and Mendiratta, M.G., ISIJ International 31, 1223 (1991).Google Scholar
34. Wagner, R., Appel, F., Dogan, B., Ennis, P.J., Lorenz, U. et al., in Ref. [4], pp. 387404.Google Scholar
35. Smarsly, W. and Singheiser, L., in Materials for Advanced Power Engineering. Part II, edited by Coutsouradis, D. (Kluwer Academic Publishers, The Netherlands, 1994), pp. 17311756.Google Scholar
36. Meier, G.H., in Oxidation of High-Temperature Intermetallics, edited by Grobstein, T. and Doychak, J. (TMS, Warrendale, PA, 1989), pp. 116.Google Scholar
37. Yoshihara, M., Miura, K. and Kim, Y.-W., in Ref. [4], pp. 93100.Google Scholar
38. Hofman, R., Schmutzler, H.J., Sunderkötter, J.D., Glatz, W., Clemens, H., and Stroosnijder, M.F., in 4th European Conference on Advanced Materials and Processes -EUROMAT95. Vol. 4, (Associazone Italiana di Metallurgica, Milano, Italy, 1995), pp. 9196.Google Scholar
39. Rahmel, A., Quadakkers, W.J. and Schütze, M., Materials and Corrosion 46, 271 (1995).Google Scholar
40. Martinz, H.-P., Clemens, H. and Knabl, W., in: Proc. 14th International Plansee Seminar. edited by Rödhammer, P. and Kneringer, G. (Plansee AG, Tyrol, Austria, 1997), in print.Google Scholar
41. Clemens, H., Rumberg, I., Schretter, P., and Schwantes, S., Intermetallics 2, 179 (1994).Google Scholar
42. Shih, D.S. (unpublished results).Google Scholar
43. Lombard, C.M., Ghosh, A.K. and Semiatin, S.L., in Ref. [4], pp. 579586.Google Scholar
44. Klassen, M., Schubert, E. and Sepold, G., in Laser Treatment of Materials, edited by Dausinger, F., Bergmann, H.W. and Sigel, J. (AWT - Arbeitsgemeinschaft Wärmebehandlung und Werkstofftechnik, Stuttgart, Germany, 1996) pp. 193200.Google Scholar
45. Reheis, N., Alber, H., Eberhardt, N., and Clemens, H., unpublished results (1996).Google Scholar
46. Leholm, R. and Martinez, M., in Ref. [15], Vol. 2, pp. 16171624.Google Scholar
47. Winkler, P.-J., Däubler, M. A. and Peters, M., in Titanium'92, Vol. 3, edited by Froes, F.H. and Caplan, I.L. (TMS, Warrendale, PA, 1993), pp. 28772890.Google Scholar
48. Glatz, W. and Clemens, H., Intermetallics, submitted for publication (1996).Google Scholar
49. Dimiduk, D.M., in Ref. [4], pp. 320.Google Scholar
50. Austin, C.M. and Kelly, T.J., in Ref. [4], pp. 2132.Google Scholar
51. Austin, C.M. and Kelly, T.J., in Ref. [6], pp. 143150.Google Scholar
52. Williams, J.C., in Ref. [6], pp. 839844.Google Scholar
53. Wright, P.K., in Ref. [6], pp. 885893.Google Scholar
54. Brown, A.S., Areospace America 3, 1827 (1993)Google Scholar
55. Dimiduk, D.M., Miracle, D.B. and Ward, C.H., Mater. Sci. Technol. 8, 367 (1992).Google Scholar
56. Sauthoff, G., in Intermetallics (VCH Publishers, Weinheim, New York, 1995), pp. 2230.Google Scholar
57. Matsuo, M., ISIJ International 31, 1212 (1991).Google Scholar
58. Ronald, T.M.F., Adv. Mater. Processes 9, 24 (1993).Google Scholar
59. Upadhya, K., J. Met. 44, 15 (1992)Google Scholar
60. Krings, K., in Ref. [25], Vol. 3, pp. 10851096.Google Scholar