No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Various forms of vanadium pentoxide, including xerogel, aerogel, and aerogel-like forms, were prepared by sol-gel synthesis and processed by novel procedures following synthesis. It was demonstrated that the intrinsic thermodynamics of lithium intercalation of the ARG and ARG-like materials prepared by solvent exchange processes involving methyl formate (MF/ARG and MF/ARG-xslike) are identical, while they are drastically different from those of the parent XRG, which gives rise to significantly increased specific energies for the MF/ARG or MF/ARG-like as lithium intercalation hosts. All three forms are capable of reversibly intercalating up to four moles of Li+ ions per mole of V205 electrochemically and can be cathode candidates for rechargeable lithium batteries. Various processing methods for fabricating composite electrodes with the XRG led to specific capacity in the range of 300 to 350 mAh/g at C4Li/ 20 rate, and good cyclability.