Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T13:29:17.045Z Has data issue: false hasContentIssue false

Processing and Mechanical Properties of Quasicrystal-Reinforced Al-Alloys

Published online by Cambridge University Press:  17 March 2011

F. Schurack
Affiliation:
IFW Dresden, Institute of Metallic Materials, P.O. Box 27 00 16, D-01171 Dresden, Germany
J. Eckert
Affiliation:
IFW Dresden, Institute of Metallic Materials, P.O. Box 27 00 16, D-01171 Dresden, Germany
L. Schultz
Affiliation:
IFW Dresden, Institute of Metallic Materials, P.O. Box 27 00 16, D-01171 Dresden, Germany
Get access

Abstract

We investigated the suitability of powder metallurgy as well as die casting for the fabrication of light-weight Al-based composites with quasicrystalline particles embedded in an aluminum matrix. Al-Mn-Ce and Al-Cu-Fe quasicrystalline powders were synthesized by milling of elemental powder mixtures or arc-melted prealloys using a planetary ball mill. The mixture of the quasicrystalline phase and the Al-matrix phase with an appropriate ratio was realized by an initial aluminum excess or by blending of quasicrystalline powder with pure aluminum. The powders were consolidated by hot extrusion. Bulk samples of Ø3mm diameter and 50mm length were also directly prepared by squeezing the melt into a copper mold. CCRT-compression tests revealed a yield strength of about 400 MPa, an ultimate strength of 565 MPa and a ductility of up to 19 % fracture strain as optimum mechanical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, P., Stigenberg, A.H., Nilson, J.O., Acta Metall. Mater. 43, 2881 (1995).Google Scholar
2. Inoue, A., Watanabe, M., Kimura, H.M., Takahashi, F., Nagata, A., Masumoto, T., Mater. Trans. JIM 33, 723 (1992).Google Scholar
3. Watanabe, M., Inoue, A., Kimura, H.M., Masumoto, T., Mater. Trans., JIM 34, 162 (1993).Google Scholar
4. Tsai, A.P., Aoki, K., Inoue, A., Masumoto, T., J. Mater. Res. 8, 5 (1993).Google Scholar
5. Büchler, E.H., Watanabe, E., Kazama, N.S., Int. J. Non-Equilibr. Proc., 10 (1997).Google Scholar
6. Benjamin, J. S., Volin, T. E., Metall. Trans. 5, 1929 (1974).Google Scholar
7. Schurack, F., Eckert, J., Schultz, L., to be published in Mater. Sci Eng. (2000).Google Scholar
8. Eckert, J., Schultz, L., Urban, K., Appl. Phys. Lett. 55, 117 (1989).Google Scholar
9. Eckert, J., Schultz, L., Urban, K., Acta Metall. Mater. 39, 1497 (1991).Google Scholar
10. Asahi, N., Mater. Sci. Eng. A226–228, 67 (1997).Google Scholar
11. Takeuchi, T., Murasaki, S., Mizutani, U., J. Non-Cryst. Sol. 156–158, 914 (1993).Google Scholar
12. Schurack, F., Eckert, J., Schultz, L., Nanostr. Mater. 12, 107 (1999).Google Scholar
13. Tsai, A.P, Inoue, A., Masumoto, T., Jpn. J. Appl. Physics 26, 1505 (1987).Google Scholar
14. Srivasta, R., Kühn, U., unpublished results.Google Scholar
15. Schurack, F., Eckert, J., Schultz, L., to be published in Acta Mater. (2000).Google Scholar
16. Hono, K., Zhang, Y., Inoue, A., Sakurai, T., Mater. Trans. JIM 36, 606 (1995).Google Scholar
17. Yavari, A.R., Drbohlav, O., Mater. Sci. Forum 225–227, 295 (1995).Google Scholar
18. Hatch, J. E., Aluminum, properties and physical metallurgy (American Society for Metals, Metals Park, Ohio, 1984).Google Scholar