Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:49:41.876Z Has data issue: false hasContentIssue false

Process-Dependent Electronic Structure at Metallized GaAs Contacts

Published online by Cambridge University Press:  25 February 2011

L. J. Brillson
Affiliation:
Xerox Webster Research Center, Webster, NY 14580
I. M. Vitomirov
Affiliation:
Xerox Webster Research Center, Webster, NY 14580
A. Raisanen
Affiliation:
Xerox Webster Research Center, Webster, NY 14580
S. Chang
Affiliation:
Xerox Webster Research Center, Webster, NY 14580
R. E. Viturro
Affiliation:
Xerox Webster Research Center, Webster, NY 14580
P. D. Kirchner
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
G. D. Pettit
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
J. M. Woodall
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

The influence of metallization and processing on Schottky barrier formation provides the basis for one of several fruitful approaches for controlling junction electronic properties. Interface cathodo-and photoluminescence measurements reveal that electrically-active deep levels form on GaAs(100) surfaces and metal interfaces which depend on thermally-driven surface stoichiometry and reconstruction, chemical interaction, as well as surface misorientation and bulk crystal quality. These interface states are discrete and occur at multiple gap energies which can account for observed band bending. Characteristic trends in such deep level emission with interface processing provide guides for optimizing interface electronic behavior. Correspondingly, photoemission and internal photoemission spectroscopy measurements indicate self-consistent changes in barrier heights which may be heterogeneous and attributable to interface chemical reactions observed on a monolayer scale. These results highlight the multiple roles of atomic-scale structure in forming macroscopic electronic properties of compound semiconductor-metal junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brillson, L.J., Surf. Sci. Repts. 2, 123(1982).Google Scholar
2. Rhoderick, E. H. and Williams, R. H., Metal - Semiconductor Contacts, 2nd edition (Clarendon, Oxford, 1988).Google Scholar
3. Brucker, C. F. and Brillson, L. J., Appl. Phys. Lett. 39, 67 (1981).Google Scholar
4. Waldrop, J. R. and Grant, R. W., Appl. Phys. Lett. 50. 250 (1987);Google Scholar
Grant, R. W. and Waldrop, J. R., J. Vac. Sci. Technol. B5, 1015 (1987).CrossRefGoogle Scholar
5. Palmstrom, C. J., Cheeks, T. L., Gilchrist, H. L., Zhu, J. G., Carter, C. B., and Nahory, R. E., in Electronic, Optical, and Device Properties of Layered Structures, edited by Hayes, J. R., Hysbertson, M. S., and Weber, E. R. (Mater. Res. Soc. Press, Pittsburgh, PA, 1990), p. 63.Google Scholar
6. Viturro, R. E., Shaw, J. L., Mailhiot, C., Brillson, L. J., Tache, N., McKinley, J., Margaritondo, G., Woodall, J. M., Kirchner, P. D., Pettit, G. D., and Wright, S. J., Appl. Phys. Lett. 52, 2052 (1988);Google Scholar
Viturro, R. E., Shaw, J. L., Brillson, L. J., Woodall, J. M., Kirchner, P. D., Pettit, G. D., and Wright, S. J., J. Vac. Sci. Technol. B6, 1397 (1988).Google Scholar
7. Chang, S., Vitomirov, I., Brillson, L. J., Rioux, D. S., Kirchner, P. D., Pettit, D., and Woodall, J. M., J. Vac. Sci. Technol. B9, 2129 (1991).Google Scholar
8. Chang, S., Brillson, L. J., Kime, Y. J., Rioux, D. S., Kirchner, P. D., Pettit, D., and Woodall, J. M., Phys. Rev. Lett. 64, 2551 (1990); J. Vac. Sci. Technol. B8. 1008 (1990).Google Scholar
9. Chang, S., Brillson, L. J., Rioux, D. S., Kirchner, P. D., Pettit, D., and Woodall, J. M., Phys. Rev. B44, 1391 (1991).Google Scholar
10. Chang, S., Viturro, R. E., and Brillson, L. J., J. Vac. Sci. Technol. A8, 3803 (1990).CrossRefGoogle Scholar
11. Chang, S., Raisanen, A. D., Brillson, L. J., Shaw, J. L., KircHrTer, P. D., Pettit, G. D., and Woodall, J. M., J. Vac. Sci. Technol., in press.Google Scholar
12. Brillson, L. J., Richter, H. W., Slade, M. L., Weinstein, B. A., and Shapira, Y., J. Vac. Sci. Technol. A3, 1011 (1985).Google Scholar
13. Brillson, L. J. and Viturro, R. E., Scanning Electron Microscopy 2, 789 (1988).Google Scholar
14. Viturro, R. E., Slade, M. L., and Brillson, L. J., Phys. Rev. Lett. 57, 487 (1986).CrossRefGoogle Scholar
15. Viturro, R. E., Slade, M. L., and Brillson, L. J., J. Vac. Sci. Technol. A5, 1516 (1987).Google Scholar
16. Vitomirov, I. M., Raisanen, A. D., Brillson, L. J., Kirchner, P. D., Pettit, G. D., and Woodall, J. M., J. Vac. Sci. Technol., in press.Google Scholar
17. Vitomirov, I. M., Raisanen, A. D., Viturro, R. E., Chang, S., Brillson, L. J., Kirchner, P. D., Pettit, G. D., and Woodall, J. M., J. Vac. Sci. Technol., in press.Google Scholar
18. Vitomirov, I. M., Raisanen, A. D., Brillson, L. J., Kirchner, P. D., Pettit, G. D., and Woodall, J. M., J. Electron. Mater., submitted.Google Scholar
19. Wager, J. F. and Van Vechten, J. A., Phys. Rev. B35, 2330 (1987).Google Scholar
20. Svensson, S. P., Landgren, G., and Andersson, T. G., J. Appl. Phys. 54, 4474 (1983).Google Scholar
21. Svensson, S. P., Kanski, J., Andersson, T. G., and Nilsson, P. O., J. Vac. Sci. Technol. B2, 235(1984).Google Scholar