Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:44:50.090Z Has data issue: false hasContentIssue false

Process and Mechanism of CoSi2/Si Solid Phase Epitaxy by Multilayer Reaction

Published online by Cambridge University Press:  15 February 2011

Bing-Zong Li
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai, 200433, CHINA, [email protected]
Xin-Ping Qu
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai, 200433, CHINA, [email protected]
Guo-Ping Ru
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai, 200433, CHINA, [email protected]
Ning Wang
Affiliation:
Dept. Of Applied Physics, City University of Hong Kong, Hong Kong, CHINA
Paul Chu
Affiliation:
Dept. Of Applied Physics, City University of Hong Kong, Hong Kong, CHINA
Get access

Abstract

A multilayer structure of Co/a-Si/Ti/Si(100) together with Co/Ti/Si(100) is applied to investigate the process and mechanism of CoSi2 epitaxial growth on a Si(100) substrate. The experimental results show that by adding an amorphous Si layer with a certain thickness, the epitaxial quality of CoSi2 is significantly improved. A multi-element amorphous layer is formed by a solid state amorphization reaction at the initial stage of the multilayer reaction. This layer acts as a diffusion barrier, which controls the atomic interdiffusion of Co and Si and limits the supply of Co atoms. It has a vital effect on the multilayer reaction kinetics, and the epitaxial growth of CoSi2 on Si. The kinetics of the CoSi2 growth process from multilayer reactions is investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Murarka, S.P., Silicidesfor VLSI Applications, Academic, New York, 1983.Google Scholar
2. Properties of Metal Silicides, edited by Maex, K. and Rossum, M. V., INSPEC, London, 1995.Google Scholar
3. Chen, L.J., Tu, K.N., Material Science Report, 6, 153 (1991).Google Scholar
4. Dass, M.L.A., Fraser, D.B., and Wei, C.S., Appl. Phys. Lett. 58, 1308 (1991).Google Scholar
5. Hsia, S.L., Tan, T.Y., Smith, P. and McGuire, G.E., J. Appl. Phys. 70, 7579 (1991).Google Scholar
6. Li, B.Z., Liu, P., Sun, Z., Gu, Z.G., Huang, W.N., Jiang, G.B., Hong, F., Rozgonyi, G.A., Proc. of 9th VMIC Conference, p. 304 (1992).Google Scholar
7. Liu, P., Li, B.Z., Sun, Z., Huang, W.N., Zhou, Z.Y., Ni, R.S., Lin, C.L., Zou, S.C., Hong, F., and Rozgonyi, G.A., J. Appl. Phys. 74, 1700 (1993).Google Scholar
8. Vantomme, A. and Nicolet, Marc-A, Bai, G. and Fraser, D.B., Appl. Phys. Lett. 62, 243 (1993).Google Scholar
9. Li, B.Z., Wu, W.J., Shao, K., Gu, Z.G., Jiang, G.B., Huang, W.N., Fang, H., Sun, Z., Liu, P., Zhou, Z.Y., Mat. Res. Soc. Symp. Proc. 337, 449 (1994).Google Scholar
10. Byun, J. S., Kim, H. J., J. Appl. Phys. 78, 6784 (1995).Google Scholar
11. Tung, R.T. and Schrey, F., Mat. Res. Soc. Symp. Proc. 402, 173 (1996).Google Scholar
12. Tung, R.T., Appl. Phys. Lett. 68, 3461 (1996).Google Scholar
13. Detavemier, C., Van Meirhaeghe, R.L., Cardon, F., Donaton, R.A., Maex, K., Appl. Phys. Lett., 20, 2930 (1999).Google Scholar
14. Steegen, A., Maex, K., De Wolf, I., Sym. VLSI Tech. Dig. p. 200 (1998).Google Scholar
15. Kittl, J.A., Shiau, W.T., Miles, D., Violette, K.E., Hu, J.C., Hong, Q.Z., Solid State Technology, 42, 81 (1999).Google Scholar
16. Inoue, K., Mikagi, K., Abiko, H., Chikaki, S., Kikkawa, T., IEEE Transaction on Electron Device, ED–45, 2312 (1998).Google Scholar
17. linuma, T., Akutsu, H., Ohuchi, K., Miyahshita, K., Toyoshima, Y., Suguro, K., 1998 Symp. VLSI Tech. Dig. p.188, 1998.Google Scholar
18. Shao, K., Li, B.-Z., Zou, S.-X., Huang, W.-N., Wu, W.-J., Fang, H., Yu, W.-F., Jiang, G.-B., Chinese J. of Semicondutors, 17, 294 (1996).Google Scholar
19. Li, B.Z., Gu, Z.G., Ru, G.P., Liu, J., Proc. of 13th VMIC Conference, p. 187 (1996).Google Scholar
20. Li, B.Z., Qu, X.P., Ru, G.P., Mo, H.X., Liu, J., Proc. of the 5th International Conference on Solid State and IC Technology, p. 251 (1998).Google Scholar
21. Cardenas, J., .Zhang, S. L, Svensson, B. G., Petersson, C. S., J. Appl. Phys. 80, 762 (1996).Google Scholar
22. Kim, G B., Baik, H. K., Lee, S. M., Appl. Phys. Lett. 69, 3498 (1996).Google Scholar
23. Selinder, T. L., Miller, D. J., Gray, K. E., Appl. Phys. Lett. 67, 159 (1995).Google Scholar
24. Ogawa, S., Fair, J.A, Dass, M. L. A., Jones, E. C., Kouzaki, T., Cheung, N. W., Fraser, D. B., Proc. of 1993 International Conference on Solid State Devices and Materials, p. 195 (1993).Google Scholar
25. Appelbaum, A., Knoell, R. V., Muraka, S. P., J. Appl. Phys. 57, 1880 (1985).Google Scholar