Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:18:56.761Z Has data issue: false hasContentIssue false

Probing Carrier Depletions on Grain Boundaries in Polycrystalline Si Thin Films by Scanning Capacitance Microscopy

Published online by Cambridge University Press:  01 February 2011

Chunsheng Jiang
Affiliation:
[email protected], National Renewable Energy Laboratory, National Center for photovoltaic, 1617 Cole Blvd., Golden, CO, 80401, United States
H.R. Moutinho
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
B. To
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
P. Dippo
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
M.J. Romero
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
M.M. Al-Jassim
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Get access

Abstract

Grain boundaries (GBs) in polycrystalline Si thin-film solar cells are believed to limit the photovoltaic efficiencies. In this paper, we report on a nanometer-resolution measurement of the carrier depletion at the GBs, using scanning capacitance microscopy (SCM). The SCM images exhibit the following features: (1) Carrier concentrations are lower at locations around the GBs than on center regions of the grains; (2) The depletion width at the GBs varies considerably, between 0 and 100 nm, depending on individual GBs; (3) Intra-grain carrier depletion was also observed at point and line defects; and (4) The faceted features that were observed on the topography of the as-grown film surface appeared on the SCM images even after the film surface was polished flat. The direct measurement of the carrier depletion on the GBs demonstrates that the GBs in Si thin films indeed create charged gap states. The nonuniformity of the carrier depletions suggests that the gap states depend on specific GB structures, which should relate directly to the grain orientations and grain facets adjacent to the GB. The depletion around the intragrain defects indicates that the defects are charged and can be recombination centers, and thus, harmful to device performance. This paper reports the first step of our studies toward understanding the relationships between the electronic and structural properties on specific GBs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aberle, A.G. Proc. 4th World Conf. Photovoltaic Energy Conversion, Hawaii, 2006, p.1481.Google Scholar
[2] Basore, P.A. Proc. 19th European Photovoltaic Solar Energy Conf., Paris, 2004, p.455.Google Scholar
[3] Yamazaki, T. Uraoka, Y. and Fuyuki, T. Thin Solid Films 487, 26 (2005).Google Scholar
[4] Beaucarne, G. Bourdais, S. Slaoui, A. and Poortmans, J. Appl. Phy. A79, 469 (2004), and the references therein.Google Scholar
[5] Kawamoto, N. Matsuda, A. Matsuo, N. Seri, Y. Nishimori, T. Kitamon, Y. Matsumura, H. Hamada, H. and Miyoshi, T. Jpn. J. Appl. Phys. 45, 2726 (2006).Google Scholar
[6] Kurobe, K. Ishikawa, Y. Yamamoto, Y. Fuyuki, T. and Matsunami, H. Solar Energy Material & Solar Cells 65, 201 (2001).Google Scholar
[7] Matsui, T. Yamazaki, T. Nagatani, A. Kino, K. Takakura, H. and Hamakawa, Y. Solar Energy Materials & Solar Cells 65, 87 (2001).Google Scholar
[8] Ishikawa, Y. Yamamoto, Y. Hatayama, T. Uraoka, Y. and Fuyuki, T. Jpn. J. Appl. Phys. 40, 6783 (2001).Google Scholar
[9] Beaucarne, G. Bourdais, S. Slaoui, A. and Poortmans, J. Proc. 28th IEEE PVSC, Alaska, 2000, p.128.Google Scholar
[10] Christoffel, E. Rusu, M. Zerga, A. Bourdais, S. Noël, S., and Slaoui, A. Thin Solid Films 403–403, 258 (2002).Google Scholar
[11] Seto, J.Y.W. J. Appl. Phys. 46, 5247 (1975).Google Scholar
[12] Warren, B. Jackson, N.M. and Biegelsen, D.K. Appl. Phys. Lett. 43, 195 (1983).Google Scholar
[13] Werner, J. and Peisl, M. Phys. Rev. B31, 6881 (1985).Google Scholar
[14] Alpern, Y. and Shappir, J. J. Appl. Phys. 63, 2694 (1988).Google Scholar
[15] Hasegawa, H. Arai, M. and Kurata, Y. J. Appl. Phys. 71, 1462 (1992).Google Scholar
[16] Cleri, F. Keblinski, P. Colombo, L. Phillpot, S.R. and Wolf, D. Phys. Rev. B57, 6247 (1998).Google Scholar
[17] Ostapenko, S. Applied Physics A69, 225 (1999).Google Scholar
[18] Choi, W. Matias, V. Lee, J.K. and Findikoglu, A.T. Appl. Phys. Lett. 87, 152104 (2005).Google Scholar
[19] Gall, S. Schneider, J. Klein, J. Hübener, K., Muske, M. Rau, B. Conrad, E. Sieber, I. Petter, K. Lips, K. Stöger-Pollach, M., Schattschneider, P. and Fuhs, W. Thin Solid Film 511-512, 7 (2006).Google Scholar
[20] Wang, Q. Teplin, C.W. Stradins, P. To, B. Jones, K.M. and Branz, H.M. J. Appl. Phys. 100, 093520 (2006).Google Scholar
[21] Teplin, C.W. Branz, H.M. Jones, K.M. Romero, M.J. Stradins, P. and Gall, S. Mat. Res. Soc. Symp. Proc. 989, 133 (2006).Google Scholar
[22] Williams, C.C. Hough, W.P. and Rishton, S.A. Appl. Phys. Lett. 55, 203 (1989).Google Scholar
[23] Zavyalov, V.V. McMurray, J.S. and Williams, C.C. Rev. Sci. Instruments 70, 158 (1999).Google Scholar
[24] Jiang, C.S. Noufi, R. Ramanathan, K. AbuShama, J.A. Moutinho, H.R. and Al-Jassim, M.M., Appl. Phys. Lett. 85, 2625 (2004).Google Scholar
[25] Brendel, R. Bergmann, R.B. Fischer, B. Krinke, J. Plieninger, R. Rau, U. Reiss, J. Strunk, H.P. Wanka, H. and Werner, J. Proc. 26th IEEE PVSC, California, 1997, p.635.Google Scholar
[26] Werner, J.H. Mattheis, J. and Rau, U. Thin Solid Films 480–481, 399 (2005).Google Scholar