Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:31:34.823Z Has data issue: false hasContentIssue false

Printed organic electronic device components from edible materials

Published online by Cambridge University Press:  02 February 2015

Alex Keller
Affiliation:
Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia.
Marc in het Panhuis
Affiliation:
Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia. Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW, 2522, Australia.
Get access

Abstract

The electrical and mechanical characteristics of ionic-covalent entanglement hydrogels consisting of combinations of the edible biopolymers gellan gum and gelatin were investigated. Impedance analysis and compression testing showed that these hydrogels (with water content = 97%) exhibited conductivity values of up to 13 mS/cm and compressive stress at failure values of up to 1.0 MPa. These are suitable characteristics for printed and mechanically robust wet device components.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Laschi, C. et al. Adv. Robotics 2012, 26, 709727.CrossRefGoogle Scholar
Guiseppi-Elie, A. Biomaterials 2010, 31, 27012716.CrossRefGoogle Scholar
Gong, J. P., Soft Matter 2010, 6, 25832590.CrossRefGoogle Scholar
Naficy, S., Brown, H. R., Razal, J. M., Spinks, G. M. & Whitten, P. G. Austr. J. Chem. 2011, 64, 10071025.CrossRefGoogle Scholar
Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z., Nature 2012, 489, 133136.CrossRefGoogle Scholar
Bakarich, S. E.; Pidcock, G. C.; Balding, P.; Stevens, L.; Calvert, P.; in het Panhuis, M., Soft Matter 2012, 8, 99859988.CrossRefGoogle Scholar
Bakarich, S. E.; in het Panhuis, M.; Beirne, S.; Wallace, G. G.; Spinks, G. M. J. Mater. Chem. B 2013, 1, 49394946.CrossRefGoogle Scholar
Kishi, R. et al. J. Mater. Chem. C 2014, 2, 736743.CrossRefGoogle Scholar
Keplinger, C. et al. Science 2013, 341, 984987.Google Scholar
Konsta, A. A.; Daoukaki, D.; Pissis, P.; Vartzeli, K. Solid State Ionics 1999, 125, 235241.CrossRefGoogle Scholar
Masselin, I. et al. J. Membr. Sci. 2001, 181, 213220.CrossRefGoogle Scholar
Kirchmajer, D. M.; in het Panhuis, M., J. Mater. Chem. B 2014, 2, 46944702.CrossRefGoogle Scholar
Warren, H.; Gately, R. D.; O'Brien, P.; Gorkin, R.; in het Panhuis, M. J. Polym. Sci. Pol. Phys. 2014, 52, 864871.CrossRefGoogle Scholar
Kirchmajer, D. M.; Watson, C. A.; Ranson, M.; in het Panhuis, M.; RSC Adv. 2013, 3, 10731081.CrossRefGoogle Scholar