Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:57:03.566Z Has data issue: false hasContentIssue false

Principles of Ion Mixing

Published online by Cambridge University Press:  15 February 2011

S. Matteson
Affiliation:
Texas Instruments Incorporated, P.O. Box 225936 MS–147, Dallas, TX 75265, USA
M.-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA
Get access

Abstract

Several mechanisms can cause atomic relocation as a result of ion irradiation. Experiments are reviewed that provide information on the atomic redistribution within a solid. Predictions of different models, when compared with these results, shed light on the dominant processes. Sucesses and problem areas are discussed and possible practical applications of the results are explored.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sigmund, P., Appl. Phys. Lett. 25, 169 (1974),Google Scholar
Sigmund, P., Appl. Phys. Lett. 27, 52 (1975).Google Scholar
2.Thompson, M.W. and Nelson, R.S., Philos. Mag. 7, 2015 (1962).Google Scholar
3.Myers, S.M., Amos, D.E., and Brice, D.K., J. Appl. Phys. 47, 1812 (1976).Google Scholar
4.Bohr, N., Mat. Fys. Medd. Dan. Vid. Selsk. 18, 8 (1948).Google Scholar
5.Lindhard, J., Scharff, M. and Schiott, H. E., Mat. Fys. Medd. Dan. Vid. Selsk. 33, 14 (1963)Google Scholar
6.Sigmund, P., Rev. Roum. Phys. 17, 823 (1972);Google Scholar
Sigmund, P., Rev. Roum. Phys. 17, 969 (1972);Google Scholar
Sigmund, P., Rev. Roum. Phys. 17, 1079 (1972).Google Scholar
7.Winterbon, K.B., Sigmund, P., and Sanders, J.B., Mat. Fys. Medd. Dan. Selsk. 37, 14 (1970).Google Scholar
8.Sigmund, P., Phys. Rev. A, 184, 383 (1969).Google Scholar
9.Sanders, J.B., Can. J. Phys. 46, 455 (1968).Google Scholar
10.Winterbon, K.B., Ion Implantation Range and Energy Deposition Distributions, Vol. 2, Low Incident Ion Energies (Plenum, New York, NY, USA 1975).Google Scholar
11.Thompson, D.A., Radiat. Effects, 56, 105 (1981).Google Scholar
12.Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 182/183, 25 (1981).Google Scholar
13.Dzioba, S. and Kelly, R., J. Nucl. Mater. 76, 175 (1978).Google Scholar
14.Christel, L.A., Gibbons, J.F., Mylroie, S., Nucl. Instrum. Methods 182/183, 187 (1981).Google Scholar
15.Chandrasekhar, S., Rev. Mod. Phys. 15, 3 (1943).Google Scholar
16.Haff, P.K. and Switkowski, Z.E., J. Appl. Phys. 48, 3383 (1977).Google Scholar
17.Andersen, H.H., Appl. Phys. 18, 131 (1979).Google Scholar
18.Matteson, S., Appl. Phys. Lett. 39, 288 (1981).Google Scholar
19.Matteson, S., Paine, B.M., and Nicolet, M.-A., Nucl. Instrum. Methods 182/183, 53 (1981).Google Scholar
20.Liau, Z.L., Mayer, J.W., Brown, W.L., and Poate, J.M., J. Appl. Phys., 49, 5295 (1978).Google Scholar
21.Vineyard, G.H., Radiat. Effects 29, 245 (1976).Google Scholar
22.Dienes, G.J. and Damask, A.C., J. Appl. Phys. 29, 1713 (1958).Google Scholar
23.Matteson, S., Roth, J. and Nicolet, M.-A., Radiat. Effects 42, 217 (1979).Google Scholar
24.Mayer, J.W., Tsaur, B.Y., Lau, S.S., and Hung, L-S., Nucl. Instrum. Methods, 182/183, 1 (1981).Google Scholar
25.Piller, R.C. and Marwick, A.D., J. Nudl. Mater. 71, 309 (1978).Google Scholar
26.Liu, B.X., Wielunski, L., and Nicolet, M.-A., (this symposium).Google Scholar
27.Wielunski, L.S., Lien, C-D., Liu, B.X., and Nicolet, M.-A., (this symposium).Google Scholar
28.Pankove, J.I., McGinn, J.T., and Wu, C.P., Appl. Phys. Lett. 39, 119 (1981).Google Scholar